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ABSTRACT 

A full understanding of the local Azerbaijani web space is necessary to analyze 
information flow patterns and influences in the local network and review the dependency 
of Azerbaijan on external sources in case of cyber-attacks or national emergencies. To 
develop this knowledge and to create efficiency in local data collection processes, a web 
crawler with a subsequent graphical analysis is a must. The goal of this research is to 
create a big graph of Azerbaijani web, analyze its linkages and most influential nodes. This 
study aims to develop a catalog of local websites, create a web crawler to browse each web 
page and outgoing links, construct a graph-based visualization with valuable information 
and apply a ranking algorithm to measure the influence scores. A multiprocessing program 
in Golang is developed to crawl the database of local webpages supplied by the Ministry 
of Communication & Information Technologies. The program consists of a master, 
multiple concurrent workers, and a Postgres database. The constructed graph consists of 
nodes representing web pages, and edges which are connections in-between. A page 
ranking algorithm is implemented to measure the importance of nodes. The observations 
are such that the graph is not too strongly connected, and governmental web pages are the 
most linked ones due to redirections to various services. 

Keywords: web crawling, graph theory, big data, page ranking, multiprocessing 
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1 INTRODUCTION 
As a vast and unstructured repository, the web can deliver massive amounts of data dynamically. 
The web is constantly growing at an almost exponential rate with an estimated 2 billion indexed 
pages scattered across the globe on hundreds of servers [1]. These pages, i.e., websites, are the 
containers of data stored on servers and accessible through the Internet. Various online resources are 
being used by people daily for buying products and services, watching video content, and sharing 
news. Businesses utilize these platforms to market their offerings and target potential customers. 
Governments reap the benefits of sharing information with citizens in real-time, quickly handling 
any national emergencies and providing easy access to numerous services, such as administrative, 
healthcare and education.  

Developing countries around the world are gradually catching up with this trend and nourishing 
modern technological cultures within their borders. Azerbaijan is keeping up with recent novelties 
and is becoming more dependent on technology day by day. Azerbaijan’s ICT industry has been 
expanding at a rate of 25%-30% since 2005 [2]. Telecommunications liberalization, upgrading and 
extension of the national telecom infrastructure, and deployment of e-government have all 
contributed to this growth. Around $2.5 billion was invested in the national IT sector with the 
government contributing 28% and local enterprises and foreign investors contributing 72% [3]. 
According to the World Bank, approximately 80% of the population has been using the internet as 
of 2019 statistics [4]. The most recent observed year-on-year growth of digital users constituted 
2,5%, with a dramatic 16,2% increase in active social media users [5]. This is also propped by 
statistics showing the highest usage of YouTube, Facebook, and Instagram platforms. Most of the 
web traffic is coming from mobile devices (circa 60%). A progressive extension of mobile and fixed 
broadband networks and reduced prices helped steer the increase in internet usage by spreading 
across more locations at affordable costs. 

However, technological development does not come without its own set of issues. Despite its 
listed pros, the Internet can also be employed for harmful purposes such as: 

• targeting national security systems (cyber-attacks),  
• promoting hate speech,  
• online crimes (credit card frauds), 
• hacking into confidential and potentially secret data sources.  
As of 2019, according to the Geneva Center for Security Sector Governance [3], 42% of computer 

users in Azerbaijan were exposed to cyber dangers at the risk of malware spreading to their memory 
cards or hard drives. There were also several attacks targeted at the country’s energy sector and 
governmental organizations, especially in the Second Karabakh War period. Diplomatic passports 
of several governmental officials were hacked by unknown agents in recent years. At some point, 
the government was even considering developing its own search engine to increase information 
security - however, no advances in this area were reported since [6].  

Hence comes the necessity of controlling the local online space and fully understanding the 
structure of the existing web traffic along with its limitations. For this purpose, a successful local 
web crawler is a must. This program aims to download and index content from the local web by 
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fetching website URLs (Unique Resource Locators) in an organized way, crawling them for content 
and finding references to connected websites to add to their queue. 

This project’s main goal is to develop an interactive graph of Azerbaijani web and analyze the 
most influential local websites by applying web crawling and ranking algorithms. The purpose of 
this delivery is to analyze patterns in data linkages and the strength of the local online space. The 
paper is divided into four main modules: introduction, methodology, results and analysis, summary, 
and future work. The introductory chapter consists of the following subsections: problem definition, 
objectives of the study, significance of the problem, review of significant research, assumptions, and 
limitations. 

1.1 Problem Definition 
Currently, Azerbaijan is missing a well-established local internet web crawler capable of reviewing 
and categorizing web pages. Its absence leads to concerns explained below. 

 
1. National businesses and governments do not effectively utilize the huge amount of data that 

can be collected from local websites for such purposes as lead generation, marketing clustering, 
public sentiment, and policy analyses. The lack of a web crawler to gather all this information means 
missed opportunities to adjust prices based on competitive insights, create market-relevant products, 
and target the appropriate audience.  

 
2. Academic institutions often do not pull data collectively from all connected sources for 

further research such as for economic studies, educational level analyses and others. Effective 
retrieval of information in this sector is of particular importance to analyze the existing research 
papers, network analyses and population clusters. 

 
3. It is hard to analyze country-level dependency on external sources and evaluate multiple 

scenarios in case of national emergencies such as war or natural disasters. The lack of solutions for 
the listed issues can lead to such problems as increased exposure to cyber threats and an inability to 
circumvent them. As an instance of a very high-ranked cyber-attack, the 2012 attack on the websites 
of the Ministries of Internal Affairs, Communication and High Technologies serves as an example. 
According to studies at the time, 24 of the 25 IPs (Internet Protocols) utilized in the attack came from 
Iran. 

 
4. There is no country-level understanding of the local internet structure, its most influential 

nodes, and linkages to external sources. This further leads to missed opportunities in applying the 
most recent advances in machine learning to categorize websites by ownership, topic content, 
sentiment classes, hosting service provider locations, amongst others. 

 
Hence, the designed solution framework and reported results must cater to all these varying needs 

and be flexible enough to allow users to view the data they need. In particular, the users must be able 
to: 
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a. interactively observe and analyze the most influential websites and their in-/out-connections; 
 
b. see relevant pre-calculated metrics for websites, such as closeness centrality, betweenness 

centrality, importance score; 
 
c. analyze websites by categories, language, topic and other useful meta information. 

1.2 Objective of the Study 
Therefore, the objectives of this project are the following: 

 
• Creating a database (catalog) of national domain names 
 
This is needed to ensure that the most used website names are collected and stored in one 

repository for maintenance and further processing. The database will store a vast number of records 
efficiently, make it simple to easily find sought-after information, add or edit new data. At the same 
time, storage of records in a database can make it easy to import them later into other applications. 
This needs to be done in a structured format for easy usage, necessitating a relational database. 

 
• Creating a web crawler to browse the local web and index pages 
 
This is necessary to enable collection of such important data as website linkages to in-country or 

external websites, metadata gathering, content parsing to identify topic categories and/or language, 
etc. This tool will gather information about each page, such as titles, keywords, etc., and save and 
index that information. The pages get indexed to sanction the process of storing and organizing 
linkages between web pages. Indexing can also optimize the performance of the web crawler itself. 
The queue of websites to crawl is created by switching to hyperlinks to which each currently crawled 
website is linked. Contents are parsed and entries for a search engine index are constructed. 

 
• Creating a graph-based interactive visualization to analyze web connectivity and strength 
 
Nodes of the interactive graph shall embody all the crawled online entities (i.e., websites) whereas 

edges are the connections in-between. Graph node representations are to be differentiated by many 
parameters, such as degree of centrality and/or betweenness, influence level. Edges shall vary in 
thickness and color according to such metrics as the number of internal or external linkages, weights, 
etc. The visualization is planned to be interactive with user flexibility to zoom in and out, switch 
modes, enabling or disabling graph features, amongst others. 

 
• Developing a ranking algorithm to identify the most influential websites 
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This algorithm will count the number and quality of links to each website and evaluate its 
importance based on those characteristics. The more important the website, the more it is being 
referenced by others. Potentially, this computation will need to be performed on an iterative basis to 
approximate the true importance values. There are various ways to measure these scores, ranging 
from betweenness centrality to identifying community clusters in a network analysis. It is usually 
best to analyze how tightly grouped the resulting communities are.   

 
• Classifying crawled websites by chosen criteria 
 
This includes analyzing website content to classify it by language, category it falls into by topic 

or association, identifying the location of its hosting service provider (in-country or outside).  
 

Overall, this project is multiple-staged consisting of firstly, the data stage during which a database 
of domains is collected. The next step is data cleaning to avoid duplicate entries or errors in reporting 
website names by respondents. Following that is the crawling, storing, and analyzing period, after 
which the ranking algorithm, graph creation and potential content-based analysis are applied. 

1.3 Significance of the Problem 
Delivering an end-to-end product for analysis of the local web has the following significance: 

 
• Unveiling information flow patterns and influences in the local network structure. 
 
• Servicing the gathered information in a user-friendly way with visuals and minimum manual 

effort for further analysis. 
 
• Serving as a platform for further advanced analyses for the purpose of natural language 

processing, such as identifying entities and topics, performing sentiment analysis, etc. 
 
• Serving as a common data source for business purposes, for example in cluster analyses, 

effective advertising strategies and customer lead generations. 
 
• Serving as a common data source for academic research, for example in economic policy 

analyses. 
 

• Serving as an analysis of the country’s level of reliance on outside sources and simulating 
possible outcomes in national emergency situations. 



13 

1.4 Review of Significant Research 

1.4.1 Web Crawling Reasons & Properties 
The reasons why web crawling was originally invented are numerous. Search engines being in need 
of returning relevant answers to user queries, automated web application and security testing are 
amongst some of those reasons. In their original design, web crawlers were purported to have the 
following characteristics [7]: 

 
• complete coverage of all web pages given unlimited time; 
• refresh policy to keep up to date with the latest changes on the web pages; 
• non-overloading and not attacking any website’s servers; 
• scalability with an increasing number of web pages to cover; 
• correct reflection of crawled content; 
• efficiency in execution time per page. 

 
Some challenges of web crawlers at their current research stage include scalability problems when 
it comes to analyzing tons of web pages in an increasingly growing web, ability to consider context 
when searching for specific topical keywords, prevention of website overloads that can hinder their 
performance, avoidance of copyright and privacy issues which occur often since crawlers copy a 
web page’s information without any permission from its owner [8]. 

1.4.2 Web Crawler Architecture & Related Graph Theory 
The problem of web crawling can be viewed as a graph traversal algorithm. The web can be thought 
of as a big graph where nodes are websites and edges are the hyperlinks between them. The crawling 
algorithm sends requests to the web using an HTTP request, downloads web pages by tracing those 
hyperlinks and parses their HTML structures for content. The crawler begins with a handful of seed 
URLs and gradually progresses through every linkage [9]. The URLs are usually kept in a queue 
object in a prioritized manner. The whole process takes a comparatively short amount of time when 
executed right, especially if parallelized. Figure 1 illustrates the basic process of the crawler. 

Algorithmically, a set of URLs, i.e. nodes, are stored in an array. The edges, i.e. links, can be 
saved as adjacency lists to illustrate forward and backward traversals. Some researchers [10] store 
in-links to the web page in an adjacency list separate from out-links from the web page which are 
saved in another. In general, out-links are the pages that can be accessed from the currently crawled 
one, while in-links are those that lead to the current web page. The graph is usually a directed one 
because a path can exist between web page a leading to web page b, but it does not mean there is a 
path from b to a for sure. Strongly connected components imply that for any web page a and b in a 
chosen cluster of nodes there is always a path. Out-degree of any given node is the number of web 
pages the node leads to, while in-degree is the number of web pages leading to the node. Full URL 
is never stored in the graph since it takes up too much space, especially for longer links. Hence, each 
URL is indexed by a unique identifier. Subsequently sorted URLs are then encoded as differences 
between the current and previous URLs which comes at a trade-off between space savings and 
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translation requirements. The authors in [10] deal with the trade-off by saving the full URL at some 
intervals for efficiency. These stored URLs serve as benchmarks from which the encoded URLs can 
then be searched. The list spaces are increased for any new additions. This paper proposes the usage 
of a Connectivity Server which assigns unique identifiers to each URL, explores the neighboring 
nodes, and delta-encodes them, then translating their encodings back into full URLs. Execution time 
is faster by about 0.01ms/URL.  

The resulting outputs are analyzed by building a graph of connections in-between web pages. 
Nodes that do not have in- or out-links are removed from the graph entirely. Edges of those nodes 
that are hosted by the same server are erased. AltaVista link queries are used to determine in- and 
out-links, stored in forward and backward sets. Graph construction time is around two hours. 
Kleinberg’s algorithm is used to find pages that act as authorities or hubs across clusters. This score 
is then used for ranking nodes according to their importance. To make the graph visually appealing, 
URL names are shortened to include host name and ID.  

Other research in this area attempts to confirm the power law distribution for degrees in a 
connected graph. Broder et al. [11] analyzed that the core web can be treated as one strongly 
connected component (SCC). The Connectivity Server software is used to handle URLs and a 
breadth-first search strategy is employed. In- and out-links form other two components (IN and 
OUT). There is also a component for web pages that do not reach the SCC and cannot be reached 
from it, either (TENDRILS). The authors show all components to be roughly of the same size. The 
paper claims that the structure of the web graph cannot be judged by looking at it at microscale - a 
macro picture is needed to fully grasp its complexity. For instance, there is only a 24% chance that 
a chosen random source node is connected to the target via some route. When a path does exist, 
however, the average distance is 16 nodes. Power law distribution is observed in the distribution of 
degrees in such a resulting web graph regardless of its scale. This law is applicable to both in- and 
out-degree distributions separately. The web’s connectivity remains relatively unaffected by the 
disappearance of substantial chunks. 

A method to hierarchically crawl the web was suggested by David et al. [12]. The paper claims 
that despite the massive volume of data being crawled, there is no reason for it to be chaotic. A 
statistical technique is employed to analyze the user’s behavioral patterns and use that as information 
to identify the topics of hyperlinked communities. This technology makes it easier to perform 
targeted web crawling based on user’s actions. 

1.4.3 Types of Web Crawlers 
There are different types of crawlers available in the industry: 
 

• Parallel Crawlers. Given the huge number of websites on the world wide web, a sequential 
crawling process can take up an unnecessarily long period of time to execute. To scale the 
process and decrease the load on the network, parallel crawling processes can get started.  
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Figure 1. Basic Web Crawler Architecture 

One of the not so obvious advantages of this approach is in the clustering of crawling 
processes by physical locations such that geographically neighboring pages get downloaded 
in a batch [9]. However, this does not come without its own set of issues connected with the 
variety of data on the web: they can come in unstructured formats or in extensions that the 
crawler is not able to handle. Figure 2 displays the workings of the parallel crawler. 

 
• Focused Crawlers. This type of crawler retrieves only those pages that are relevant to the 

chosen topic, and hence is often called a topical crawler. Before crawling any page, the 
crawler determines the relevancy of the document to the topic to save time and resources 
[13]. If the relevance score does not meet a certain predefined threshold, the web page is 
cast aside. Crawling tasks get allocated across various workers using shared memory. 
However, one weak spot of this approach is the search by keywords without taking context 
into account. 

 
• Generic Crawlers. All data is gathered from each web page regardless of its topical 

relevance by this crawler. This, therefore, leads to a lot of time and memory consumption 
[14].  

 
• Distributed Crawlers. These operate on a network of computers each of which has its own 

dedicated crawler. Managing and coordinating the work on each node is the main issue to 
ensure that work does not get repeated on different nodes. Distribution can take place 
through such frameworks, as [14]: 
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- A master-slave relationship, in which a host machine leads the process of assigning and 
monitoring tasks on slave machines. 
 

- An autonomous relationship, in which a given machine communicates with every other 
autonomously to coordinate its work. 

 
- A mixed relationship, in which autonomy is maintained yet the host can intervene in 

case of failed tasks to re-assign them. 
 

- A peer-to-peer framework such that crawling is distributed across loosely cooperating 
nodes using a hash table for URL-to-node allocations. 

 
• Incremental Crawlers. To maintain the up-to-dateness of crawled data, incremental crawlers 

revisit the previously crawled pages on a periodic basis. The pages that are ranked as more 
important than others get revisited and updated first on a priority basis [15]. One of the main 
issues of this crawling type is a lack of scalability and a huge load on the network. Separate 
modules rank web pages collected in a dataset by their importance scores, and update those 
based on the resultant priority.   

 
• Hidden Web Crawlers. This crawling algorithm downloads the data that is hidden from the 

search engine. Contents of each web page are analyzed for the presence of a search form 
(the “<FORM>” tag in HTML). The found form is then analyzed, candidate values are 
created, and then forms are filled out to get submitted to their respective URLs. Following 
this process, the linked hyperlinks are crawled next [16]. Despite its pros in gathering 
information from the sites hidden away, this crawler is not scalable and cannot operate with 
some file extensions. 

 
In general, due to the massive pool of data on the web, crawling is a slow process. Yet its time 
execution can be improved by adding hardware resources and/or boosting network bandwidth. 
At the same time, focusing the crawling task only on essential web-pages can raise the bottleneck 
created by useless web pages [14].   
 

The performance of the crawler can be measured by such metrics as (1) the harvest rate per 
some unit of time, or (2) the ratio of the number of relevant pages over total crawled pages. 
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Figure 2. Parallel Crawler Architecture 

1.4.4 Data Storage 
The crawled data can be stored either in a database or local file depending on the size. The database 
storage can be in a tabular or key-value format. By making each transaction atomic, possible failures 
and data losses are prevented. Some existing implementations have made use of a Redis key-value 
database which does not allow for repetition [14] and increases the efficiency of the crawler checking 
if a web page already exists in the database. Others made use of such NoSQL databases as MongoDB 
to store the crawled data. In comparison to relational databases, the latter one is schema-free and 
offers easy horizontal scaling at minimal cost [17]. 

1.4.5 Crawling Search 
There are several algorithms that crawlers can adopt to perform the search process for hyperlinks. In 
essence, the issue comes down to graph traversal using either of the following strategies: depth-first 
search, breadth-first search, or best-first search.  
 Depth-first search is a recursive traversal strategy in which the search process starts from a 
random root node and each linked web page is then examined before retracing. The visited nodes 
are marked, and the algorithm continues with other unmarked nodes. The way it works 
algorithmically is through keeping a seed of URLs in a stack, popping the last element from it to 
traverse next, adding it to a set of those nodes that are already visited, adding connected hyperlinks 
to the stack, and continuing this process until no web page remains [18]. The pros of this approach 
are in less time and space complexity, with cons being the inability to find the most optimal solution 
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due to being stuck in some branch or not knowing the optimal depth of the search. Figure 3a 
illustrates the workings of this algorithm.  

Breadth-first search traverses all nodes on a given depth level first before continuing to the next 
depth level. A random root node is added to a queue object, then a node is dequeued - the first 
element is popped. The visited node is marked, and all neighboring nodes are added to the queue. 
The process is continued until no node remains in the queue. The advantages of this approach include 
optimal time complexity in a sense that the search process does not go on too deep, especially if the 
solution is near the root of the tree. The main disadvantage, however, is in memory requirements to 
store all nodes and their neighbors [19]. Figure 3b displays how this approach works. 

Best-first search expands a chosen node based on some priority rule. A heuristic function is used 
to estimate the closeness of any given path to the solution and govern the traversal. In essence, the 
issue comes down to finding the least-cost path. A priority queue is maintained to pop the elements 
with the highest priority first. This algorithm can come in informed and uninformed forms. The most 
popular informed version of it is A-star, in which a cost of the path is the sum of the costs of its arcs, 
including a heuristic cost to the target node [20]. The disadvantage of this approach is in the inability 
to design a proper heuristic function sometimes. Figure 3c displays the basics of this search method. 

 

 

Figure 3. Graph Search Strategies 

The process of identifying all neighboring nodes has long been a slow one, and several prototypes 
have been tested to quicken the search for predecessor and successor nodes. 

1.4.6 Smart Querying 
Although traditional keyword search serves its purpose for finding required information in a vast 

pool of unstructured data, the process becomes too cumbersome when dealing with structured data. 
Users are left with no choice but to manually examine the data they have, decide which ones they 
need to access, analyze source data individually and then combine the results. Hence, there is a 
requirement to develop smart querying algorithms to eliminate the need for such manual processing.  

Some researchers have tried developing systems which can provide consistent access to a 
collection of documents with varying formats [21]. These systems try to address the following 
concerns: 
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• connected data stored across different sources must be recognized and exploited, 
• connections must be utilized to fill in the gaps of incomplete data of any particular source. 
 
Levy et al. [21] developed an algorithm for efficiently finding an answer to a given query from 

various data sources. The practicality of this mechanism is in its scalability without sacrificing 
performance and the ability to identify the same object referenced across different sources.  

A relational data model is implemented with a class hierarchy between query subjects and objects. 
Each source content must be linked to these classes and their features to be able to answer a given 
query. The way this is done is by modeling each source content as a set of tuples (i.e., relations). For 
example, a source can contain a relation of CourseList(course, teacher) which is mapped to an 
overarching global relation of Teaches(course, teacher, hour, room) stored centrally [21]. In essence, 
each source is then described as a set of possible queries. Capability record for each source is 
maintained to showcase the kinds of queries it can answer. A series of accesses to data sources, i.e. 
query plans, are created to incorporate data from many sources to answer a given query 
comprehensively.  

Traditional query plan executions using views are not scalable because they entail an exponential 
increase in processing with the rising number of data sources. Hence, the authors invent a new 
algorithm for the same problem as described below. 

 
1. The first step of the algorithm is to create a bucket for each part of the query. For example, 

a tuple is searched for across every source’s capability record. A query to extract this data from each 
source is designed. 

 
2. The resulting sub-queries are combined and reviewed for whether they are semantically 

correct as a total. 
 
3. The ordering of the combined query is considered to make sure that it is correct and will 

return the targeted answer. 
 
The resulting system is called the Information Manifold (IM) which has a user-friendly interface. 
Users can flexibly adjust their queries using either prepared or blank templates. The system can 
handle data from up to 100 information sources with about 10 plans generated from those per query 
at an estimated 22 seconds per plan. The authors prove that time of execution increases with adding 
more information sources, however, the increase is not exponential. The architecture of the system 
is provided in Figure 4 adopted from [21]. 
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Figure 4. The Architecture of the Information Manifold System [21] 

1.4.7 Single- or Multi-Threaded Web Crawling 
Crawling methods based on priority queues usually perform best because hyperlinks are weighted 
and put into a priority queue. The advantage of this approach is that undesirable hyperlinks are 
pruned beforehand from consideration. To speed up the process, however, multi-threading can be 
used.  

Multi-threaded web crawler is implemented by having one main thread which controls the worker 
threads. Each child thread is responsible for downloading its assigned set of web pages, extracting 
hyperlinks from each downloaded web page, extracting domains and other relevant content, and 
ranking the web page based on some algorithm. The data of each crawler is then written into shared 
memory buffers. The structure of the working algorithm is such that [22]: 

 
1. A root URL is chosen for further expansion. 
2. Hyperlinks within the URL are extracted. 
3. Text from the URL is parsed and converted into a term document frequency matrix. 
4. Cosine similarity between the web page features and the original query is computed. 
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5.  The computed score is used to rank web pages in a priority queue to achieve a best-first 
search traversing strategy. 

 
Some researchers have tried carrying out the multi-threaded process using hierarchical clustering. 
For example, in [23] authors use an input textual file to select a root web page to start crawling. Next, 
hyperlinks within the crawled web page are found and indexed. The web page is then clustered 
according to the specified number of clusters. Java NetBeans, MySQL, and WAMP Server are used 
to apply and compare the performance with that of a single-threaded process. Comparison metrics 
used include harvest rate, execution time, recall, precision, and harmonic mean, amongst others. 
Harvest ratio is defined as the number of relevant documents relative to the total number of crawled 
documents. The researchers prove that their method works better in terms of execution time and 
relevancy score of the crawled web pages.   

Another study [24] suggests avoiding the usage of a simple URL queue in multi-threaded 
executions. Whenever multiple threads try to access the same resource, a deadlock can potentially 
occur by one thread waiting indefinitely for another to finish. Therefore, a synchronization lock 
(mutual exclusion) with a binary semaphore should be present. While the mutex is locked, access is 
reserved only for the thread that has acquired it. After performing its operations, access is released 
so that another thread can pick up the resource. If at any time, any thread tries to gain access to the 
shared resource, such as the URL queue, and it is not available, then the operation is pushed into a 
stack for waiting. To avoid problems with an empty URL queue stopping the crawling process, when 
in fact threads are still working on adding more links to the URL queue, a novel method to put 
threads to sleep is used [25]. When any thread faces an empty URL queue, it is put to sleep for some 
time. When it is awakened, it checks for URLs in the queue once more. The number of threads that 
are sleeping is checked via the global monitor track. The entire crawling process stops only after all 
threads are in the sleeping state. 

In [26] red-black tree structures are used to manage the process of fetching URLs from a database 
and inserting new hyperlinks. These data structures are efficient and result in low computational 
costs. Parsed HTML structures are stored in a HashMap format which is a key-value data store with 
O(1) time complexity mapping the term frequencies of words to page addresses. 

1.4.8 Graph Ranking 
There are several graph ranking algorithms in place, such as Kleinberg’s HITS (Hyperlink Induced 
Topic Search) or Google’s PageRank. In simple terms, a graph ranking algorithm determines the 
importance of any graph node by recursively computing relevant information from the whole graph.  

Kleinberg’s HITS mechanism computes two scores iteratively: a) degree of a node’s authority, 
which is measured by the number of incoming links, and b) a node’s hub value, which is measured 
by the number of outgoing links. Google’s PageRank, however, takes both in- and out-links into 
account when computing the rank iteratively. In [27] the ranking algorithm is further extended by 
adding edge weights as another factor to consider. The authors develop a text ranking method - Text 
Rank - that considers the extra factor due to the presence of multiple links between text sentences 
and the need to know how strong the sentence-to-sentence connectivity is. 
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A pseudo-code for the calculation of Kleinberg’s HITS rank is provided in Algorithm 1. In 
essence, for any given node, initial hub and authority scores are assigned. Then, the scores get 
updated in an iterative fashion k times. In the end, normalization is performed to arrive at a 
comparable value scale. A node with a higher authority score is the one to which high hub scored 
nodes lead. A node with a higher hub score is the one to which high authority scored nodes lead. 
Authority scores dictate whether nodes contain valuable information about a given query. Hub scores 
indicate whether nodes are useful in getting to the high authority pages [28].   

Positional power ranking is another method whereby a node’s importance is determined by both 
the number of outgoing links and the power of the neighboring nodes. The power of a node can be 
computed by the Copeland score or dominance functions [29]. 

Google’s PageRank is not as simple as counting the number of in- and/or out-links to determine 
how important a given vertex is. Not all links are accounted for equally, and normalization is also 
performed. A probability distribution of ending up on a web page is computed in an iterative fashion. 
In particular: 

 
1. All web pages are initialized with the same random value for the probability of arriving at 

that node. For instance, the initial probability can be 0.3 for a set of web pages Alan, Brown, Clyde, 
and Dino. 

 
2. If pages Brown, Clyde and Dino only lead to Alan, then the probability of Alan is computed 

as a sum of their probabilities. In essence, P(Alan) = 0.9. 
 
3. If, however, Brown leads to Clyde and Alan, Clyde leads only to Alan, and Dino leads to all 

three, then P(Alan) = P(Brown) / 2 + P(Clyde) + P(Dino) / 3 = 0.55.   
 
4. Since Brown leads to Clyde as well, and Dino leads to Brown and Clyde, the probability of 

Clyde must be updated. Thus, iteration starts and P(Clyde) = P(Brown) / 2 + P(Dino) / 3 = 0.25. 
This now implies that P(Alan) must be reinstated using the updated Clyde value. 

 
5. Iteration continues until the probability values converge. 

 
The mathematical formula is as below, where A, B, C are pages, L is the number of outgoing links 

from each page, N is the total number of pages and d is a damping factor for the probability of a user 
leaving the page [30]: 

 

𝑃𝑅(𝐴) =
(1 − 𝑑)
𝑁

+ 𝑑	𝑥	 .
𝑃𝑅(𝐵)
𝐿(𝐵)

+	
𝑃𝑅(𝐶)
𝐿(𝐶)

+⋯3					(1) 

 
The PageRank algorithm has been adopted and extended for more specific purposes across 

industries. For example, in [31] the authors propose using a citation count metric along with 
PageRank to prioritize outbound links for scientific text analytics. 
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In [32], the authors suggest that due to the high vulnerability of any given graph to purposeful 
harmful attacks executed with the purpose of increasing the ranking unjustifiably, understanding 
which exact graph elements contribute most to the ranking score is crucial. Algorithms to find such 
graph elements are proposed. Aurora-E method is presented to determine the top-K important edges 
in each graph with a diminishing value property. The core algorithm relies on picking an edge and 
then updating the gradient matrix for every K iteration. The influence of a node is determined by 
Aurora-N method whereby it’s defined by the number of ingoing and outgoing edges [33]. 

ALGORITHM 1: Kleinberg’s HITS Algorithm 

N = set of nodes 
 
for each node in N do 

  node.auth   = 1      // initial score for authority of the node 
  node.hub    = 1     // initial score for hub of the node 
 

for iteration in range(1, k) do   // perform for k iterations 
 

  for each node in N do            // update authority scores 
   node.auth = 0     
   for each neighbor in node.incomingNeighbors do  
    node.auth += neighbor.hub 
 
  for each node in N do        // update hub scores 
   node.hub = 0 
   for each neighbor in node.outgoingNeighbors do  
    node.hub += neighbor.auth 
 
 
Other metrics can also be used to measure the importance of any given page, such as the presence of 
relevant keywords in a document which depends on the context the user is searching for, similarity 
of parsed information to a given query, cosine similarity between the seed page and its hyperlinks to 
determine relevance, classification score when training a machine learning model on the page 
contents. 

1.5 Assumptions & Limitations 
The following assumptions and limitations apply in this research: 

 
• Avoidance of Endless & Closed Loops. The problem of falling into a never-ending loop 

whereby each page’s outgoing link leads to more outgoing links in an iterative fashion must be 
circumvented. At the same time, it may happen that an outgoing link leads back to the already 
crawled page thus forming a closed loop. To prevent these issues from taking place, the implemented 
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web crawler will only process the depth level of 2 for outgoing links from each page in the collected 
dataset without continuing beyond the initial tranches. No page will be visited twice, so the crawler 
is not planned to be incremental. 

 
• API Bottleneck. API (Application Programming Interface) requests rate-limiting is 

applicable such that no more than 45 concurrent requests can be sent per minute. This is due to the 
usage of a tool which offers this free quota. The limits are set to safeguard websites from a huge 
stream of same-time requests and potential denial of service (DoS) attacks. If this quota is exceeded, 
a “429 - Too Many Requests” or “ECONNRESET” errors get thrown. 

 
•    DDoS Attack Bypassing Cloudflare. Some websites make use of Cloudflare to protect from 

attacks by rate limiting, firewall protection, and IP access rules. Bypassing this system is a limitation. 
 
• Azerbaijani Content in Non-Azerbaijani Pages. Pages containing content in Azerbaijani 

language on such external websites as “facebook.com” can be mistakenly crawled as part of outgoing 
links and thus, classified as local. HTML structure parsing and language identification will therefore 
be crucial in the correct determination of local content. 

 
• Azerbaijani Domains Used Externally. Due to the relative cheapness of Azerbaijani domains 

as compared to others in the market, it may be the case they get purchased by external parties and 
do not actually associate with or contain any local content. As in the bullet point above, parsing and 
language determination are to be used to safeguard against such realistic instances. 
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2 METHODOLOGY 
This section of the paper describes the methods and tools used for the study. The first subsection 
describes the data collection strategy, and the second subsection follows with a visual explanation 
of the implemented database. The third subsection details the workflow of the applied web crawler 
algorithm. The penultimate subsection focuses on graph construction and visualization techniques, 
with the final subsection dedicated to the implementation of a graph ranking algorithm. 

2.1 Data Collection 
Information about Azerbaijani domains is collected via two sources: 

 
• a survey conducted within the ADA University student community, and 
• data supplied by the country’s Ministry of Communications & Information Technologies. 
 

The design of the survey is such that the respondents are asked to enter their first and last names, 
and the list of local domains they are aware of and often use. The survey is conducted on a sample 
platform created using the Django web framework. The reason for choosing this is due to the open-
source, ready-to-use, and easy architectural pattern that Django provides.  

There are 31 unique survey respondents. The collected data necessitates a few cleaning steps to 
perform for domain purification. In particular, the regular expressions defined in Table 1 are used to 
strip out the “www”, “http”, “https”, “/” and “://” characters. So, a website entry like 
“http://camex.az/” is converted into a much simpler “camex.az”. However, some entered domains 
bypass the purification stage due to having an index to individual pages like “eyol.az/contact.html”. 
These are impure domains and are subsequently neglected resulting in only 1623 unique pure domain 
names.  

The data provided by the Ministry contains approximately 13000 unique web pages. 

Table 1. Regular Expression Patterns for Domain Purification 

regex pattern 1 regex pattern 2 

(http[s]?)://www\.(.*\.[a-zA-Z]*)/?.* (http[s]?)://(.*\.[a-zA-Z]*)/?.* 
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Figure 5. General Program Workflow 

2.2 Program Workflow 
There are three parts to the implemented program: master, worker, and the database. At the current 
research stage, the database is not fully integrated yet, however, all the necessary parts are in place.  

To make the system work and have the data crawled, first the master is initialized. In the terminal, 
the actions that the master can do are made visible. For instance, first the message will say that 
configurations are set, and then it will add jobs. Each domain gathered from the Ministry is a unique 
input and hence, a unique job. Once all jobs are added and configurations are set, the master is ready 
to serve and prints the corresponding message. 

Configurations entail the existence of an environment file for database connection credentials, 
and critical parameters for the worker and crawler – for instance, a maximum depth parameter to 
define how deep the crawler should dive in the job. 

On a separate terminal, the worker is initialized. The reason why this takes place independently 
is due to multiprocessing. Asynchronous calls are created to make the program execute faster. 
Requests do not have to be run in a single asynchronous call because they can be made independent 
and have their own threads. There is a waiting period for the completion of all threads to gather 
results in a predefined URL structure. It is important to note that several structures are made available 
throughout the program – for instance, a URL structure supports easy and understandable mapping 
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and ingestion. Once the worker is started, it also goes through the initialization and configuration 
stages. Next, it starts requesting jobs from the master through remote protocol connections. A socket 
between the master and worker is created, and the worker calls the socket all the time. A method to 
request jobs is available in the master program, with an argument and a reply pointers. Once the 
master is ready to assign a job to the worker, the latter is added as an argument pointer and is assigned 
to the reply pointer, so the worker can get that reply for processing or appending to its queue.  

Once the worker receives a job, it starts collecting metadata. A special API is used to return all 
the necessary attributes such as IP address, location, latitude, and longitude, etc. The gathered data 
is stored in a metadata structure and as a JSON file in a specified location. The structure of the folder 
for each domain is such that: 1) in the environment file, the location for the domain is specified, 2) 
the program creates a folder with the domain name in that location, and 3) creates a metadata JSON 
file in that folder once collected, and a URLs JSON file once all hyperlinks are crawled. The created 
URL structure is not as simple as the Metadata structure, for example. A single string is not simply 
stored but is in fact split into domain, subdomain names and extension before submitting to the 
database for easy processing. The URL structure has such attributes as protocol, subdomain, domain, 
extension, and path. After each URL is split, a single URL structure is added to the list. Once 
crawling is performed, that list is converted into JSON and written to a urls.json file. Even if a 
particular domain is not working, it should still have some metadata indicating the status of 
reachability and a message of why it failed. Hence, each domain has its own folder regardless of its 
operability. 

Once crawling is over, the program moves to the phase of reporting the job status. A method to 
report jobs is available in the master and the status of a particular job is changed to done. In the 
database phase actual ingestion does not get applied yet but the structure and multi-thread 
synchronization are already completed. The database design is structural to ensure integrity and 
security of data for later analysis. 

The general workflow of the program is displayed on Figure 5. 

2.3 Database Design & Implementation 
The design of the database the aim of which is to store crawled information is provided in Figure 6 
and explained below: 

 
• The main entities participating in the database are the seed domains collected via the 

aforedescribed survey and from the Ministry, the linked domains which seed domains lead 
to through hyperlinks and their metadata. Metadata includes useful information about each 
domain, such as its IP address, geolocation, and content language amongst others.  

 
• The Domain table is the table containing the core web sites in the database. Its main 

attributes are name and extension which are used as primary keys. In a domain like 
“camex.az” the extension corresponds to “.az”, and “camex” is the domain name. 
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• The DomainMetadata table stores such attributes as ip_address, status, continent, 
continent_code, country, region, region_name, city, zip, lat, lon, timezone, isp, as and 
as_name which represent descriptive information about each domain. 

 
• IPv4 is a 32-bit web page address whose bits are separated by dots while IPv6 can store 

up to 128 bits and hence can handle a much larger address space. IPv6 separates bits by 
colons and contains hexadecimals. Some of its other benefits include simpler routing 
and easier administration. Machines connecting to a network are identified using these 
IP addresses. 

 
• The continent to timezone attributes store the geographical placement of the website’s 

IP address. This data can be extracted using an HTTP GET request sent to an IP 
geolocation identification website. 

 
• The isp attribute saves the internet service provider name, while the status attribute 

returns either a success or failure of accessing the web page. 
 
• The as and as_name attributes store the information about AS number and organization 

separated by space. 
 
• All the above attributes relate to each provided name and extension which act as foreign 

keys in this table. 
 
• The Url table stores the unique outgoing links collected from seed domains. Its main 

attributes are protocol, subdomain, name, extension, path and lang, context. 
 

• The protocol attribute describes the preferred way of communicating with the server 
of the linked domain. This can be HTTP (HyperText Transfer Protocol) or TLS 
(Transport Layer Security) for instance. 

 
• The path attribute saves the full URL (Unique Resource Locator) of the outgoing 

link. 
 

• The name and extension attributes store the name and extension of the provided 
URL path. 

 
• The subdomain attribute stores the part additional to the main name. For example, 

in “contact.camex.az” the subdomain is “contact”. 
 

• The lang attribute stores the language of the URL, while the context attribute stores 
the HTML document of the page. 
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• In terms of relationships between domains, each domain can map to many outgoing links. 

Hence, the relationships between Domain and Url tables are one-to-many. 
 

• In terms of relationships between domains and their metadata, each domain can only have 
one entry for all metadata items. Hence, the relationships between Domain and 
DomainMetadata tables are one-to-one. 

 
The implementation of the database is performed on PostgreSQL which is a relational database 

widely used for web applications. The reason for choosing this platform is due to the need to 
structurally save the gathered data for easier processing. “CREATE DATABASE” command is 
executed from the shell prompt subject to having the necessary privileges. “CREATE TABLE” 
commands are used to construct the tables described above. In particular, the following data types 
apply: 

 
• VARCHAR(n): this data type is for such attributes as ip_address, city, lang, domain name, 

extension, path, subdomain, and protocol.  
 

• TEXT: this data type is to store the value of the html attribute. 
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Figure 6. Database Entity Relationship Diagram 
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2.4 Web Crawler Architecture & Implementation 
The web crawler consists of two main components:  

 
• the master thread, and  
• three worker threads. 
 

The master thread is responsible for allocating tasks across workers through the thread pool and re-
assigning any failed tasks back to available threads. Its workflow is provided in Figure 7. Workers 
perform the tasks allotted to them and are intended for re-usage after task completion. A worker is 
initialized and retrieves the assigned task from its job bucket. Next, a corresponding URL is extracted 
from the database. The worker sends an API request call to the domain. If the call is not successful, 
in a sense that the domain is inaccessible and throws errors, then only the metadata of the domain 
gets stored in the Metadata table of the database. The worker’s task is then terminated. However, if 
the domain is accessible, the process continues. Two asynchronous processes are initialized: 

 
• a process to detect the domain’s IP address, find its geolocation, and 
• another process to crawl the web page for content, extract hyperlinks within it and store the 

HTML document of the webpage. 
 

Asynchronous processing entails the usage of lightweight threads for an almost-parallel execution. 
When the work by these latter threads is finished, the main thread is notified. The crawled metadata 
and outgoing links are then stored asynchronously as well in the Metadata, Mapper and Linked 
Domains tables. The worker then continues crawling each outgoing link from each seed domain. If 
the outgoing link is already in the database, such that it has already been visited, then the task is 
terminated. Otherwise, usual crawling techniques continue, and the data is expanded. The workflow 
of the worker is provided in Figure 8. 

The entire implementation of this algorithm is done with Go. In particular: 
 

• There are client, database, master, worker, utils and main folders. 
• Within the database folder, there are such modules as connection.go, server.go and 

structure.go. Such functions as Insert, Select, createConnection and MakeDatabase are 
made available in server.go to interact with and construct the database.  

• Within the client folder, there is a client.go module which contains such functions as Client 
and call to provide various commands for the client to use, such as “crawl”, “write”, “help” 
and “exit”.  

• Within the master folder, there are such modules as rpc.go, server.go and structure.go. Such 
functions as RequestJob, ReportJob, addJobs, MakeMaster, MonitorWorker and 
MonitorResources are made available in the server.go module, while serving functions and 
JobRequest/JobResponse structs are housed in the rpc.go module. Each job has such 
attributes as ID, Task and Status, while the master has such attributes as Jobs, Access, 
ProcessDetails and SocketName. 
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• Within the worker folder, there are such modules as server.go, structure.go and utils.go. 
Such functions as parseUrl, dumpUrlsToJson, dumpDomainMetadataToJson, 
readDomainMetadataFromJson and generateFinalDestinationStructures are made 
available in utils.go. Each URL has such attributes as protocol, subdomain, domain, 
extension, path, and metadata pointer. The URL metadata struct has HTML and language 
attributes. DomainMetadata struct has IpAddress, Status, Message, Continent, 
ContinentCode, Country, Region, RegionName, Timezone, Lat, Lon, Isp, Scrapable 
attributes. RequestJob, ReportJob, requestDomainMetadata, Work and crawl functions are 
available in server.go. 

• Within the main folder, main functions to create master and workers, initialize database 
connections are made available. 

 
A more detailed description of the most significant functions and structs follows together with visual 
examples.  

 
• func crawl(task string, dirPath string,  filePath string) 
 

This function crawls the web pages defined within an inputted task and then visits the hyperlinks of 
each web page. First, a default collector is instantiated which runs multiple threads and caches 
responses to a given directory path to prevent multiple downloads of pages even if the collector is 
restarted. Then a callback is called on every found href attribute which stands for hyperlinks. The 
said hyperlinks are parsed and then scraped upon gaining successful access. The function waits until 
all threads are done. This workflow is detailed in pseudo-code in Algorithm 2 below. 

 
• func parseUrl(rawUrl string) 
 

This function returns a custom URL struct composed of its protocol, subdomain, domain name, 
extension, and full path. Specifically, a raw URL string provided as an input is parsed and the 
protocol is then set by obtaining the scheme information of the parsed URL details. The host is then 
split into subdomain, domain, and extension. The full path is also accessed through the parsed URL 
details. The pseudo workings of this code are provided in Algorithm 3. 
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Figure 7. Master's Workflow  
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ALGORITHM 2: crawl() function 

task       = task identifier 
c            = standard collector from Colly Golang crawling framework 
urls = []   // make an empty list to store hyperlink URLs 
 
c.OnHTML(“a[href]”, func(e *colly.HTMLElement) do   // for each found href 

 
  link = e.Attr(“href”)                                // get the outgoing link 
  urls = append(urls, parseUrl(link))        // append the parsed link to a common list 
  e.Request.Visit(link)                             // scrape the found link page 
 

c.Visit(task)                                      // scrape the assigned task 
 

c.Wait()            // wait for all threads to finish 
 

 

ALGORITHM 3: parseUrl() function 

rawUrl = raw URL input string 
 
urlDetails = url.Parse(rawUrl)   // get URL details after parsing a raw string using go 
 
protocol = urlDetails.Scheme   // set protocol 
 
hostSplitted = strings.Split(urlDetails.Host, “.”)    // split into domain, subdomain & 
extension 
 
path = urlDetails.Path                                         // set full URL path 
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Figure 8. Web Crawler Worker's Workflow 
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• func (worker *Worker) Work() 
 
This function runs as an endless loop until tasks assigned to the worker are finished or the thread is 
terminated. First, the worker requests a job from the master thread. If no jobs are left for the worker 
to do, it is killed. Otherwise, domain folder path is set for the worker-assigned tasks. A check is 
performed to make sure the metadata of the assigned task has not been scraped yet. If the check is 
successful, the worker requests domain metadata and writes it to a JSON file saved to the domain 
folder path. Then, the file path for links is set and the worker starts crawling them, as well, storing 
the outputs in a urls.json file. Finally, the status of the job is updated through a reportJob method. 
The workflow is detailed in Algorithm 4 below. 

ALGORITHM 4: Work() worker function 

  loop 
job = worker.RequestJob()  // worker requests a job 

 

if job == nil:     // if no job left, terminate the worker 
          break  

 

outPath = os.Getenv(“OUTDIR”)  // get the output path 
dirPath = outPath + job.Task         // define directory path for the specific task 

 

if _, err := os.Stat(“sample.txt”); err != nil:    // check if the metadata was scraped 
 

  metadataFilePath = dirPath + job.Task + “metadata.json”   // path 
  metadata              = worker.getDomainMetadata(job.Task)  // get 
  dumpDomainMetadataToJson(metadata, metadataFilePath) 

 

outgoingLinksFilePath = dirPath + job.Task + “outgoingLinks”  // the path to href 
              crawler.crawl(job.Task, outgoingLinksFilePath)  // crawl links & dump to JSON 
 
 
 

• func (worker *Worker) requestJob() 
 
This function is executed by a worker thread to request a new job. Request and Response structs are 
initiated, and the worker calls the master asking for a task. If the status of the reply is Assigned then 
a job is returned. In case the status is Wait, the thread hangs on until a job is assigned. Otherwise, 
the returned job is nil. 
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• func (master *Master) monitorWorker(job *Job) 
 

This function monitors the worker’s job from the main thread. If no response is received from the 
worker thread during 300 seconds, then the worker is dubbed as idle. If the job is done, however, the 
monitoring ends. Algorithm 5 details the workings of this function. 

 
• func (master *Master) monitorResources() 
 

This function monitors resource availability. The domain metadata API request count is reset to zero 
if no response is received within a minute.  

 
• func (master *Master) addJobs(tasks [] string) 
 

This function adds jobs to the job pool. Looping over all tasks takes place and an incremental ID is 
assigned to every task, which then gets added to the total pool of master’s jobs. Idle jobs count is 
also updated. The master thread manages idle, occupied and done jobs. This workflow is detailed in 
Algorithm 6. 

ALGORITHM 5: monitorWorker() function 

timer = 300 * time.Second   // set timer to 300 seconds 
defer time.Stop()    // execute until the timer is up 
loop 

  if timer.C:  // if timer is up 
   job.Status == “idle” // set status of the job as idle 
   return 
 

  default:   // otherwise 
   if job.Status == “done”: // check if job status is complete 
    return 
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ALGORITHM 6: addJobs() function 

 

master.Access.Lock()  // reserve access by master thread 
 

defer master.Access.Unlock()   // release access  
 

for id, task in range(tasks) do  // loop each task 
 

  newId = master.ProcessDetails.latestJobId + id + 1   // compute the next job ID 
master.Jobs[id] = &Job{Id: newId, Task: task, Status: “idle”}  // add task 
master.ProcessDetails.latestJobId = newId  // update latest job ID 

 

master.ProcessDetails.idleJobsCount  +=  len(tasks)   // update idle jobs count 
 

 

 • func Insert(), func Select(), func CreateConnection()  

These are made available to interact with the database. The Insert() function is used to insert 
records into the database, the Select() function is used to query the database, and the 
CreateConnection() function is applied to create a connection pool with the Postgres database.  

• func MakeDatabase() 

This function loads a given environment, and establishes a connection URL by getting user name, 
password, host, port, database name and database URL. After setting the correct parameters, the 
server starts working. 
 

• struct JobRequest, struct JobResponse, struct InsertRequest, struct InsertResponse, struct 
SelectRequest and struct SelectResponse 

 
These are various RPC calls necessary to work with the database and worker threads. Each worker 
needs to request for a job and record the result of the job. The crawler needs to insert requests and 
record the result of such insertion, as well as query and get the result of such querying.  
 

• other structs 
• Job: Id (integer), Task (String), Status (String) 
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• Domain: Name (String), Extension (String), Metadata (*DomainMetadata) 
• UrlMetadata: Context (String), Language (String) 
• Url: Protocol (String), Subdomain (String), DomainName (String), Extension (String), 

Path (String), Metadata (*UrlMetadata) 
• ProcessDetails: latestJobId (int), idleJobsCount (int), doneJobsCount (int), 

occupiedJobsCount (int), domainMetadataApiRequestCount (int) 
• DomainMetadata: IpAddress (String), Status (String), Message (String), Continent 

(String), ContinentCode (String), Country (String), Region (String), RegionName 
(String), City (String), Zip (String), Lat (String), Lon (String), Timezone (String), Isp 
(String), As (String), AsName (String), Scrapable (Bool) 

 
The concurrent thread execution takes place with the usage of Goroutines and channels. 

Goroutines are essentially lightweight threads representing workers. The main thread is called the 
main Goroutine. To communicate with other threads, channels are used. Data can be written to or 
read from Gochannels which serve as tunnels for data transfer. Goroutines are created by using the 
statement go in front of executing functions. A channel is created by using a simple make statement 
and chan keyword. To prevent shared resources from being mistakenly modified, a mutual exclusion 
(mutex) lock is implemented. This safeguards against multiple Goroutines accessing and editing data 
at the same time. That is why, throughout the bits of code that access a common data repository, 
statements like Access.Lock() and Access.Unlock() are utilized to reserve access to a single worker 
for the duration of the functional execution. This is applied in such functions as: 

 
• RequestJob() due to access granted to a shared container of jobs, 
• Done() to check whether all tasks are completed and increment the counter for finished jobs,  
• addJobs() to add new tasks to the shared container and update their IDs.  

 
Overall, the following criteria were considered during the development process: 
 

• Ensuring the efficiency of the process by using concurrent execution whilst maintaining the 
integrity of shared resources. 

• Ensuring a proper handling of failed tasks by re-assigning them to available threads. 
• Ensuring system scalability due to the ability to scale up to the maximum number of threads 

that can be created on the user’s local workstation. Hence, there is an upper limit on the concurrency 
that can be achieved, and limitless scalability is not guaranteed. In a distributed deployment 
environment, however, the system can be upscaled by increasing the amount of hardware 
components (i.e., increasing the number of nodes in a cluster, as an example). 
• Ensuring the openness of the code base to further improvements by other developers. 

2.5 Graph Construction 
The networkx Python library is used to construct graphs. This library is useful because the scale of 
the data for this study is big but not too enormous as in that scenario massive network power will be 
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needed. Also, it provides flexibility in implementing various graph structures. Separate classes for 
directed and undirected graphs are provided for easy usage.  

The directed graph is instantiated with the DiGraph() class whose nodes and edges are at first 
empty. Next, nodes are added with add_node() method whose input is the domain currently collected 
by the web crawler. Edges are created by the add_edges() method applied to the current node and 
each of its outgoing links. Already visited nodes are marked to disable duplicate efforts. The nodes 
are collected in a separate file as a list, and the same for edges which gather the “to” and “from” data 
to establish node-to-node connections. This information can then be directly fed into the graph 
instantiation using the read_edgelist() method. Weight is a specific edge attribute that carries values 
needed to differentiate edges by some criteria. As an example, a weight of 5 between nodes 1 and 2 
gets assigned by the following piece of code: g[1][2][‘weight’] = 5.0. The graphs are drawn using 
the matplotlib interface. For instance, a circular graph can be displayed by calling draw_circular() 
on the constructed graph matrix. In-degrees of a graph can be computed by using the in_degree() 
method.  

 
There are several node centralities that can be used to compute important graph metrics: 

 
• Betweenness centrality 
 
This metric can be calculated using the betweenness_centrality() method called on the graph and 

is indicative of the amount of influence a node has in a network. This centrality measure computes 
how often a given web page lies on the path to other web pages. Despite the number of in-degree, 
any node can have a high betweenness centrality if it acts as a broker between its kin. The formula 
for its calculation includes counting the number of times a given vertex intercepts shortest paths 
between other nodes (2).  

(𝑛 − 1)	𝑥	(𝑛 − 2)
2

							(2) 
 
• Closeness centrality 
 
This metric can be calculated using the closeness_centrality() method called on the graph and is 

indicative of the closeness of a given vertex to others in the network. This centrality measure 
computes which nodes are better at disseminating information across all vertices. The normalized 
formula for its calculation involves computing shortest paths between nodes (3). There are several 
algorithms in place for computing the shortest path between any two given nodes. This includes 
Dijkstra’s, A-star, Floyd-Warshall and Viterbi search algorithms.  

 
(𝑛 − 1)

𝑠𝑢𝑚9𝑑𝑖𝑠𝑡(𝑉𝑖, 𝑉𝑗)?	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑗	𝑖𝑛	𝑛𝑜𝑑𝑒𝑠
						(3) 

 
• Eigenvector centrality 
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This metric can be calculated using the eigenvector_centrality() method called on the graph and is 
indicative of the transitive influence of a node across the network. This centrality measure computes 
eigenvector scores, and high eigenvector scores usually indicate a node connected to other nodes 
which also have high scores. The formula computes this metric recursively based on the measures 
computed for previous nodes (4). 
 

𝑋𝑖(𝑡) =H𝐴𝑖𝑗	𝑥	𝑋𝑗(𝑡 − 1)
!

"

						(4) 

 

2.6 Page Ranking 
The page ranking score can be computed by adopting an already implemented method in the 
networkx library - the pagerank() method. The pseudocode is provided in Algorithm 7. First, degrees 
for each vertex get computed. Then, initial sores and probabilities are set. Afterwards, the initially 
computed and updated scores are compared with the tolerance level. If the difference cannot be 
tolerated, the probability scores are updated again until the values converge. 

2.7 Metadata Collection 
 
There are a few ways to extract the language of any website: 
 

• Relevant HTML tags can be checked, such as <meta name = “language” content = 
“...”>, or the lang parameter within <div> or <html> tags.  
 

• Getting a rather small text part to easily parse to determine the language using Python 
libraries. For instance, Python’s NLTK difflib can be used to compare the set of parsed 
tokens with a particular language’s vocabulary to find commonalities or differences.  
 

• Sending a GET request with a text chunk to a free language detector API which replies 
with a JSON output detailing the highest scored language. 
 

Depending on the availability of relevant tags in a document’s HTML structure, either (1) or (2)-
(3) will get used. 
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ALGORITHM 7: Page Rank 

n = number of nodes 
 

for edge(u,v) in G:       // compute degree of each neighbor 
 degree(v) += 1 
 

for node u in G:         // initialize probabilities 
 const(u) = (1 - ɑ) / degree(u) 
 PR_old(u) = 1 / n 
 

while norm(PR_old - PR_new) > tolerance:        // update probabilities if tolerance exceeded 
 for node u in G: 
  PR_new(u) = ɑ 
  for node v in pointing to node u: 
   PR_new(u) += const(v) x PR_old(v) 
 
 
 
To find the geolocation of an IP address, a GET request can be sent to an open-source API, like 
IP2Location with the extracted IP address of a web page. The IP address can be extracted by using 
a ping function called on the web page or the nslookup command. The commands, however, can 
fail if the web page is not accessible - hence, null values are expected for such instances.  
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3 RESULTS & ANALYSIS 
The internal connectivity of the resulting graph is not expected to be strong, and most likely 
connections over a thousand edges will not be present. The reason for this assumption is low inter-
connectivity between web pages except for governmental websites which contain many redirections 
between each other to point to the services citizens can make use of. Many websites are expected to 
link to such global pages as Facebook and Twitter. These types of connections can make it easier to 
find security lacks by tracing which domains are affected in case of an attack on the network of any 
website. This analysis can also be grouped by providers, or any other metadata item through such 
machine learning algorithms as k-means clustering. 

A total of circa 13,500 websites are attempted to be crawled, of which 9393 are reachable, and 
4,106 are unable to be scraped, and 1 domain is unreachable. The reasons for the inability to crawl 
some web pages relate to either non-working domains or their development in PHP (Hypertext 
Preprocessor). The depth level for the program is limited to two, and some websites too long to 
crawl (e.g., news sites) due to a lot of intra-linkages. This type of pages was excluded from further 
execution. Overall, the program execution took place for approximately two days. The device used 
for execution is MacBook Pro M1 with 8-core CPU and 8-core GPU, and 1 TB added storage.  

The results presented in this section are masked with random names where necessary to 
preserve data confidentiality and maintain the rights of each website to privacy and security. 
Sample results saved in a comma-delimited file are showcased in Figure 9. Each observation 
contains a source page, a target page, assigned node and edge weight, protocol, parsed subdomain, 
domain name and extension, full path and collected metadata. Metadata includes such attributes as 
context which stores the HTML document, and language which contains information on the 
natural language of the page. 

The data is gathered into source and target columns to enable the creation of a directed graph, 
resulting in 93,545 unique observations. In terms of protocols, the majority of collected data relate 
to https protocol (circa 72,000 observations) and the rest - to http protocol (circa 21,000 
observations). There are 1,877 unique subdomains, the majority of which are www, mod and 
bilikfondu. The number of unique extensions is 10, and the majority ones are az, com, org and ru, 
followed by extensions less in size, such as net, me, tr, de, eu and be.  

 
Figure 9. Sample of Collected Data 

The largest node sizes are not described for confidentiality reasons but some of the relatively 
important not strategic ones include zoo.az, palitranews.az, extratime.az, interyermebel.az and 
liebherr.az. These results are represented in Table 2, in non-normalized form. 
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Table 2. Largest Nodes in Web Graph 

Source Node Weight 
zoo.az 670 

palitranews.az 469 
extratime.az 465 

interyermebel.az 424 
liebherr.az 415 

 
In terms of target edge weights, there are a lot of hyperlinks outgoing to such websites as 

governmental, social media websites and alisuperdeals.com. This is displayed in Table 3, in non-
normalized form with masked names for strategically important websites. 

Table 3. Largest Edge Weights in Web Graph 

Source Edge Weight 
aaaa.az 15,703 

bbbb.com 7,589 
cccc.az 7,470 

dddd.com 6,177 
eeee.com 3,899 

ffff.az 3,038 
gggg.com 2,568 
hhhh.az 1,360 
jjjj.com 1,117 

alisuperdeals.com 932 
 
The size of graph nodes represents importance scores assigned to each webpage. The 

importance scores are measured by the PageRank algorithm. Weights are also assigned to edges 
based on the number of times two given nodes connect with each other. To calculate these weights, 
the program counts the number of times an outgoing link is referenced. Self-linkages are not 
accounted for since they do not entail any extra information. The graph is constructed based on 
those edge weights that are within a standard deviation of 20 or higher across all edges, excluding 
those edges that fall outside the average range. This is done to make the resultant graph 
comprehensible visually, as otherwise the program loads too slowly, and the output is nearly 
impossible to be read. The bird-eye view of the entire graph is provided in Figure 10 and weights 
about 81 GB, while its more condensed form with only selected edges is in Figure 11.  
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Figure 10. Bird-Eye View of Azerbaijani Web Graph 

The results indicate four strongly grouped communities. The tightest groupings happen around 
government websites, as well as commercial and organizational pages. Also, one can observe that 
there are indirect linkages to other less tightly connected websites. These include news sites, such 
as azertag.az, and social media pages like instagram.com and youtube.com.  

 

 
Figure 11. Sample of Higher-Weighted Nodes 
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Figure 12 displays a sample deep-dive view of the resultant graph. There are two tightly connected 
groups on the figure. Some websites from the governmental community relate to social media and 
news sites indirectly. For example, azertac.az is connected to governmental websites through a 
path going through azertag.az, which is linked to a social media site and through the latter, linked 
to a governmental page. There is a whole range of two-way connections, and they happen mostly 
between the same domains. The connections between poly.az and poly.com, dunyaschool.edu.az 
and dunyaschool.az serve as examples of such bilateral linkages. 

 

 

Figure 12. Sample Azerbaijani Web Graph Deep-Dive View 

Google’s page ranking algorithm is applied to nodes, and their importance scores are computed. 
Table 4 displays top five most highly ranked websites, which highly relate to the clusters displayed 
on previous figures.  
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Table 4.Top-5 Page Ranking Results 

Node PageRank 
aaaa.az 0.11 
bbbb.az 0.06 
cccc.az 0.02 
dddd.az 0.01 
eeee.az 0.01 

 
In terms of languages, the most prevalent ones are Azerbaijani, English, Russian and Turkish. The 
exact counts of websites per top languages are provided in Table 5. 

Table 5. Top Languages 

Language Number of Web Pages 
az 46539 
en 36282 
ru 6729 
tr 2294 
de 251 
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4 CONCLUSION & FUTURE WORK 
To conclude, this study implements a big graph of Azerbaijani web to form a full understanding of 
the local web space, its most influential players and information flow patterns. This is especially 
important in the age of technology as Azerbaijan progresses its innovative development and is hence 
highly susceptible to factors coming outside of local sources. At the same time a by-product of this 
research is a local web crawler which can be used to collect data from Azerbaijani websites for 
business or academic purposes.  

The implemented web crawling program is written in Golang and executed on a MacBook Pro 
M1 device for the duration of two days on approximately 13,500 Azerbaijani domains. The program 
consists of a master thread and several concurrent workers executing their assigned jobs. Workers 
crawl the provided seed domains and outgoing hyperlinks up until the second tranche. In the process, 
metadata, such as IP address, geolocation, hosting provider name, language and context are 
collected. The gathered data is stored in JSON format, in a separate folder for each unique domain. 
Caching is enabled to prevent multiple downloads of the same page if the program crashes or is 
stopped for any reason. 

The processed observations are gathered into a structured data format to create a directed graph. 
Node sizes convey the importance scores of websites, while edge sizes represent the strength of 
linkages in-between. Overall, the resultant big graph is visually tightly connected although there are 
still some sparse parts remaining. As expected,  governmental websites form the most strongly 
connected component, followed by websites grouped around educational, commercial, and 
organizational sites. The constructed graph is narrowed down into those communities where edge 
weights are within the standard deviation range of 20 or higher for the purpose of comprehensibility. 
Indirect linkages with news and social media sites are present in some tightly connected groups, such 
as governmental websites. Bilateral connections mostly take place between the same domains, or 
domains centered around the same context. The most highly ranking nodes are also sorted by their 
importance scores and provided in a data table. It is important to note that the program implements 
a depth level of two only for easier and faster processing.  

Future work in this space includes the following: 
• making the visualization more interactive and less space-consuming such that users can freely 

filter on the attributes they are interested in; 
• clustering graph nodes by the industry to which they belong (e-commerce, government 

organizations, education, etc.); 
• clustering graph nodes by natural language prevalent on their websites; 
• clustering graph nodes by hosting service provider locations; 
• applying machine learning techniques, and natural language processing, to collected samples 

from each page to find clusters based on recognized entities or topic names;  
• stress testing how the connectivity of local web space breaks in case of severe impact coming 

from outer sources, and propagating through the graph; 
• removing a limit of two-tranche depth level to enable a full computation of the Azerbaijani 

graph and consider all the available hyperlinks; 
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• running the crawling algorithm on a more powerful machine for much faster concurrent 
processing and without depth limitations. 
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