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ABSTRACT 
 

 
Speaker identification is a process of identifying a person who is speaking and is very 
useful in applications such as customer service or even in investigations and reporting 
forensic evidence. This study focuses on finding the relationship between the latest state-
of-art technology in speaker recognition which is x-vectors, and the uttered text within 
audio signals, as well as, the duration of them. In order to accomplish that, three different 
datasets are used: two relatively small digits datasets in English and Azerbaijani, and one 
larger dataset of digits and commands in Azerbaijani. The hypotheses tested in this 
research are as following: 1) x-vectors hold the information about the text in audio 
recordings, and the accuracy of the model changes as the text is changed; 2) x-vectors 
show better accuracy with longer audio recordings than shorter ones. All three datasets 
were trained to test the first hypothesis and the findings show that when the models are 
given audio samples in which a new unseen text is uttered, the accuracy decreases 
drastically. The last dataset was used to test the second hypothesis. Indeed, x-vectors are 
data-hungry and more speech samples together with longer duration of recordings gave the 
best results. Although, most of the experiments are conducted in the Azerbaijani language, 
it is believed that the results are not related to the specific language. Moreover, testing 
these hypotheses with a dataset of another language will yield the same results, as proved 
with the English dataset in this study. 

Additional Keywords and Phrases: speaker recognition, speaker identification, TDNN, x-
vectors, text-dependent, duration 
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1 INTRODUCTION 
This section gives an introduction about the topic, and below subsections subsequently provide the 
definition of the problem, objective of the study, significance of the problem, a review of significant 
research, and last but not the least, assumptions and limitations. 

1.1 Definition of the Problem 
Identifying a voice is a very basic understanding of a human being on sounds. Even from a very little 
age, a child can identify if a person calling him/her from another room is his/her mother, father, 
grandmother or grandfather without seeing the caller. We start forming this function of our brain at 
an early age. For example, when it comes to recognizing a mother’s voice, babies are able to 
distinguish their mother’s voice from other women starting from the very first day [1]. However, it 
is still unknown how our brain works and performs its duty in identifying voice and speech. In 
traditional understanding, speaker and speech recognition are two different functions where the first 
one occurs in the right hemisphere of the brain, whereas, the latter recognition occurs in the left one 
[2]. However, recently in 2010, it was discovered that the left hemisphere also encodes information 
about identifying speakers and these two functions do not work separately and are not isolated, but 
rather it is a network of parts of the brain that work together [2]. The area of the brain responsible 
for speaker and speech recognition was identified, however, it seems like the process regarding how 
our brain works on speech and speaker recognition is still an ongoing research and yet, a mystery 
for researchers. 

Nevertheless, despite the exact process of identifying speakers being unknown, there is plenty 
of research going on to accomplish this task with the lowest error possible. Over the years people 
have tried to identify people based on their voices for a plethora of reasons. Identifying voice 
accurately is most importantly needed in crime investigation to investigate the subject and in law to 
derive correct judgment on innocence or guilt. Addiotionally, banks also make use of information 
about a speaker currently on the phone for better targeted service or for protection from fraudulent 
calls. However, it is not a simple and straightforward task to accomplish as it appears in spy movies. 

It is true that a human voice can act as an identification method since our voices are unique due 
to many factors. Our throat, nose, nasal cavity and oral cavity shape the buzzing sound coming from 
our vocal cords and make a unique voice. Because of glottis size, vocal tract shape, as well as, the 
shapes and sizes of other voice producing organs, no two human-beings share identical voices. 
However, voiceprint identification is not as reliable as fingerprint or eye retina print. There are many 
reasons contributing to it. One of the reasons is that our voices change depending on our mood, 
health and lastly on age. A person in a happy mood may sound different than in a sad mood. In 
addition, cold, flu, or a dentist appointment can also affect our voices. Another reason is that sounds 
rarely are without background noise. Be it street noises, office noises or any other environmental 
sound, the variable feature of background makes the task of identifying speakers harder for humans, 
as well as, computers. The key point to understand is we, humans, also make mistakes in recognizing 
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voices. Our brain can mistakenly think of two different voices as similar and belonging to the same 
person even though they are different, or it also happens that we cannot identify the voice on the 
phone when the person talking is ill. Additionally, if we have only one way of conversing with a 
person, say with a normal tone, we probably mistakenly recognize their voice when they sing, laugh 
or shout. When humans make erroneous assumptions like these in their usual lives, expecting a 
computer to perform in one hundred percent accuracy in recognizing speakers is not adequate. 
Therefore, most of the research is conducted with predefined text or text independently, but with 
many thousands hours of speech to perform relatively well. 

Although there are many difficulties in the path, the research on speaker recognition is going 
forwards because of the need in governmental agencies and businesses. The future of speaker 
recognition promises very exciting capabilities such as using your car with your voice or signing a 
transaction without long and complicated steps. 

1.2 Objective of the Study 
The role of machine learning algorithms in accomplishing the task of speaker identification is 

immaculate. Since 1960, algorithms have been developed to classify recordings and recognize 
speakers. The earlier algorithms focused on how to differentiate separate recordings using their 
variability in channels and speakers, later the focus was more on how to represent each recording in 
a vector space. The later approach proved to be better than saving variabilities of each recording. 
The vector space not only represents utterances more mathematically, but also enables us to observe 
how similar or different utterances are in the space relatively well. 

The latest state-of-art methodology in this area was developed in 2018 and is called x-vectors 
[3]. These vectors represent recordings and are created using deep neural networks. Their purpose is 
to embed utterances into numbers in vectors in order to move from our typical understanding of 
audio with signals and frequencies to the mathematical world. After, vector comparison and distance 
finding methods help to differentiate those vectors easily and help us derive conclusions on the task 
of speaker recognition. The authors of this embedding method claim it better represents utterances 
and achieve high accuracy in verifying them. 

The technology discussed earlier is the main method of developing and experimenting speaker 
identification models in this paper. This research focuses on developing a speaker identification 
model using the latest state-of-art methodology to further test the relationship between identification 
and uttered texts and also the relationship between identification and duration of utterances. To 
accomplish these tasks, datasets in English and Azerbaijani languages were used. The English dataset 
was used to test the relationship of identification with uttered texts, and the Azerbaijani datasets were 
used to test both text relationship and duration relationship. 

The tested hypotheses are that a speaker identification model developed with x-vectors will hold 
information about the text uttered in recordings and the accuracy possibly increase or decrease 
depending on the similarities in text in the test set. There is a similar study which tests the 



12 

performance of separate speech and speaker recognition models and a combined speech and speaker 
recognition model [4]. According to the results, the latter correlated model performed better than 
models which extracted information only related to one task. This leads to the idea that speech and 
speaker recognition, in other words, utterance and spoken text are deeply correlated. Therefore, this 
research is aimed to test the hypothesis that a speaker identification model will have information 
about the uttered text without specifically underlying it or giving it as an input. The experiment 
consists of training a model with utterances of speakers containing a specified text and testing the 
same speakers with another text and with a combination of seen and unseen texts. 

The next hypothesis is, as the duration of recordings for the enrollment of speakers increases, 
the accuracy of correctly identifying speakers should increase and vice-versa. Similar situation with 
us, human-beings, is that the more we hear a conversation of one person, it is easier for us later to 
distinguish this person’s voice from others compared to the person we heard only once. The longer 
and more the recordings are, more information can be extracted from them, thus the model will 
differentiate speakers more easily. The paper experiments with the duration of the speech by making 
it longer and observes the relationship between duration of the speech and accuracy of identifying a 
speaker. 

1.3 Significance of the Problem 
Advancements in deep neural networks in recent years contributed to further development of 
algorithms on voice and speech to be more accurate and faster. It opens doors for more studies, 
research and experiments since the updated algorithms become widely available and take less time. 
Applications of voice and speech also increased in recent years. Considering the fact that speaking 
is a lot faster than typing, many assistance tasks are conducted via sound. Examples for these can be 
virtual assistants, voice activations and controlling in cars and Interactive Voice Response (IVR) 
systems. 

One part of voice processing is speaker identification. The purpose of speaker identification is to 
recognize the speaker and answer the question “Who is speaking?”. This information is very useful 
in many settings, such as in banks. The use cases of it can be instantly identifying users and 
personalizing the interaction. Also, a natural login process for chatbots and virtual assistants or in 
general digital channels also can be implemented. Furthermore, nowadays, two-factor authentication 
is very popular and demanding. Almost every website or app having a login process implements it 
to secure the interaction from malicious attempts. Thus, the second part of two-factor authentication 
can be conducted with speaker identification. Another purpose of speaker identification is criminal 
investigations. It dates back to the 1660s, where the trial about the death of Charles I in Britain 
applied the identification by voice for the first time in the history [4]. The voice of the subject in the 
court can be identified and further verdict could be given based on the findings. 

To further underline the significance of this research, it can be said that no study has been 
conducted in speaker identification in the Azerbaijani language. There is only one research study 
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related to the speaker identification task, which has been conducted to collect a dataset for speaker 
identification [5]. But no architecture of this field was put under the test and experiments were not 
conducted. Considering similar languages, speaker identification has been conducted in Turkish, but 
with old technology [6]. Furthermore, most of the studies in speaker recognition tests the 
technologies or architectures with a large dataset named VoxCeleb [7], which has 7 million 
utterances, and very few focus on their performance on smaller datasets. Also, most of the studies 
are text-independent, which creates a gap for text-dependent studies to fill in. 

This study experiments with the latest state-of-art technology in speaker identification using 
relatively smaller datasets both in English and Azerbaijani and further tests two hypotheses about 
the technology: whether it has relationships with a given text in utterances and duration of utterances 
so that the change of one will impact the accuracy. 

1.4 Review of Significant Research 
The technologies developed to identify speakers based on their voice have evolved a lot during the 
last 60 years. In the last century two embedding methods, namely i-vectors and x-vectors, have been 
developed to identify speakers. 

The study in [8] implements an approach consisting of i-vectors with probabilistic linear 
discriminant analysis (PLDA) as a backend technique to test its performance with various features. 
The tested features are Perceptual Linear Predictive (PLP), Mel Frequency Cepstral Coefficients 
(MFCC) and a combination of them. Using the conversational datasets of, such as NIST SRE 2004-
2010 and the Switchboard corpora, the authors found that fusion of PLP and MFCC gave better 
results than MFCC alone. 

Yet another interesting research is conducted by N. Ibrahim and D. Ramli [9]. They applied a 
speaker recognition task on the voices of frog species with i-vector methodology. They experimented 
with 3 sizes of Gaussians and 3 dimensions of vectors and found out that the smallest size of Gaussian 
combined with the largest dimension of i-vectors gave the most accurate results in recognizing and 
classifying sounds of frogs. 

The main technological method used in this study is x-vectors [3]. The authors compared their 
new approach with a popular method of i-vectors to test how well the architecture performs with 
larger datasets. The datasets are Speakers in the Wild and NIST SRE 2016 Cantonese. The authors 
concluded that with the help of augmentation, such as noise and reverberation, x-vectors derived 
from the deep neural networks performed significantly better than i-vectors. 

D. Raj, D. Synder, D. Povey and S. Khudanpur, the common authors from the previous study, 
have experimented more with x-vectors to find out what additional information is embedded in them 
[10]. They have taken into account several information pieces, such as speaker, uttered text, channel, 
duration of a recording and augmentation type. Moreover, the findings were compared also with i-
vectors and the information they hold inside over various vector dimension sizes, like 128, 256, 512, 
and 768. The tested dataset was RedDots dataset, and the authors found that without augmentation 
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for x-vectors, both embedding achieve similar results in distinguishing and classifying various 
information about speech samples, however, when augmentation is added to DNN, the performance 
of x-vectors drastically increase. 

Another research about x-vectors from different authors was conducted [11]. In this research L. 
Gerlach, F. Kelly and A. Alexander, tested the newest state-of-art architecture with a British-English 
dataset with 6000 telephone recordings from 600 speakers for speaker profiling. This dataset is 
additionally separated into two categories in terms of recording conditions, which are landline and 
mobile. In all cases, x-vectors achieved better results, even for the case of mobile conversations. 
While i-vectors scored with 15% Equal Error Rate (EER) in speaker profiling, for x-vectors this 
number was 1-3%. 

Next study in the field of speaker recognition informs about the caution which concerns how 
optimistic researchers are about the certainty of the speaker recognition task [12]. The authors list 
several conditions in which such systems can perform ideally which are: recording processes are 
controlled, speakers are not trying to fool the system when recording their voice by changing it, 
speech from test and train sets should not differ much in recording conditions. Additionally, 
prohibiting speech synthesis tools and making a task from text-independent to text-dependent will 
improve results. 

In [13], the authors introduced the advantages of time delay neural networks (TDNN) over 
ordinary deep neural networks (DNN) in long temporal contexts by their speed and accuracy. The 
authors explained that ordinary DNN starts working on long contexts from the first layer, while 
TDNN starts with short context and later layers explore the information hidden in longer temporal 
contexts. By experimenting with a popular Switchboard dataset with a speech recognition task, they 
also found that the performance of TDNN is a lot better than DNN by 2-6%. 

An extended version of TDNN was introduced in 2020, which claims to surpass the abilities of 
vanilla TDNN [14]. This methodology is named as ECAPA-TDNN and adds the emphasized channel 
attention, propagation and aggregation to TDNN which is where the name comes from. By utilizing 
the attention mechanism, ECAPA-TDNN showed improvement in the task of speaker verification 
with ResNet datasets. This methodology also utilizes well in other domains and settings. 

Another study discusses the challenges of speaker recognition and compares the existing methods 
[15]. The compared technologies are template matching, nearest neighbor, hidden markov models 
and neural networks. For example, the challenges of neural networks are described as 
computationally expensive and not guaranteed to generalize. Additionally, feature extraction 
techniques are also discussed such as Linear Predictive Coefficients (LPC), Linear Predictive 
Cepstral Coefficients (LPCC), Mel Cepstral Coefficients (MFCC), Perceptual Linear Predictive 
Cepstral Coefficients (PLPCC) and Real Cepstral Coefficients (RCC). The paper also underlines the 
applications of speaker recognition, gives factors that affect the accuracy and lists 9 features to be 
satisfied for speaker identification to be a biometric system. The authors emphasized that speaker 
identification can be a biometric system, but limitations still exist and need to be solved in the future. 
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A similar article focused on challenges and difficulties, as well as, ideal cases of speaker 
recognition alongside with comparing methodologies [16]. Constant referral to the human brain, how 
it functions and acts lets the readers understand and draw a line of difference between a human and 
a machine processing and distinguishing voice. 

The next study named “AZ-SRDAT - A Speech Database for Azerbaijani Language” has 
contributed to the Azerbaijani community by collecting voice samples in the Azerbaijani language 
for the task of speaker recognition [5]. 86 speakers with a female to male ratio 75:25, have uttered 
digits, isolated words, combinations of digits and a paragraph. The authors did not define the portion 
of utterances for enrollment and the other for testing, to let researchers choose which part of the 
dataset is more suitable for their studies, short utterances or long paragraph utterance. The recordings 
are at 16 kHz.  

Similar to this research, a text-dependent speaker recognition system has been developed in the 
Turkish language [6]. The system performs speaker verification using Gaussian Mixture Model - 
Universal Background Model (GMM-UBM), a little bit older technology, to identify Equal Error 
Rate (EER) with a Turkish dataset consisting of 46 speakers. The EER was found to be 5.73% and 
further studies to increase the accuracy is needed as it is noted by the authors. 

Some studies attempted to compare and define the best feature extraction methods and filter 
banks. One of such studies has been conducted with uniform-frequency cepstral coefficients 
(UFCC), nonuniform-frequency cepstral coefficients (NFCC) and mel-frequency cepstral 
coefficients (MFCC), together with filter banks as Mel-scale, uniform and non-uniform filter banks 
[17]. The dataset used to test the feature extraction methods is a popular TIMIT dataset, and the 
architecture for speaker recognition is GMM. The experiments have also been conducted with 
compressed speech which adds a significant insight into the features, in general. Additionally, real 
time recognition and identification in tv series like “Friends” are conducted. As an outcome, the 
author has concluded that UFCC performed the best in these experiments which means that high-
frequency samples hold very important speaker information. However, the experiments with 
compressed speech resulted in favor of MFCC. 

A similar study was conducted with not only different feature extraction techniques, but also 
combination of them with various architectures for speaker identification [18]. The tested techniques 
are mel-frequency cepstral coefficients (MFCC), linear predictive cepstral coefficients (LPCC) and 
perceptual linear prediction (PLP). The architectures are decision tree algorithms, Support Vector 
Machine (SVM), k-nearest neighbors (KNN) and neural networks. In addition, the study 
implemented Principal Component Analysis (PCA) and t-SNE for dimensionality reduction. The 
dataset is a very small one with only 15 speakers and each having 3 recordings. Nevertheless, the 
authors found that the best technique depends on the size of data, where with a small dataset MFCC 
and weighted KNN performed the best, while with a larger one MFCC together with PLP and 
weighted KNN gave the best results. 
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Yet another interesting study has been conducted with a speaker identification task on identical 
twins [19]. As we know, vocal tract and other voice organs define the voice, and if two people have 
very similar vocal tract shapes and sizes, the accuracy of speaker identification becomes questionable 
and challenging. The dataset in the experiments consisted of one read and one random sentence 
uttered by 9 male and 26 female twins. According to Hermann Kunzel, the author, although twin 
voice recognition is not a standard task, twins are not the exact copies of each other and inter-speaker 
differences can be found. 

In [20], the speaker identification system for differentiating speakers with only isolated words is 
implemented with two settings: text-dependent and text-independent. The feature extraction is done 
with MFCC and UMRT, which is a transform used for image compression. The technology used in 
the study to train speaker recognition is neural networks. The dataset consists of 15 speakers each 
uttering 7 commands, such as “up”, “down”,  “left”, “right”, “start”, “pause” and “stop”. Depending 
on the setting of the experiment, whether it is text-dependent or text-independent, either all 
commands are used in training, or some commands are excluded. The study concluded that MFCC 
together with UMRT performs better than MFCC alone. The best accuracy achieved for the text-
dependent system is 97.91%, and for the text-independent system the accuracy is 94.44%. 

The study conducted by O. Orman and L. Arslan attempted to identify the subbands in frequencies 
that yield better discrimination of speakers [21]. Utilizing Vector Ranking criteria, the authors found 
that 0−1000 Hz and 3000−4500 Hz are more significant to automatic speaker recognition systems 
than any other subbands and result in better performance when identifying speakers. 

A book written by Sadaoki Furui gives a deep understanding of speech and speaker recognition 
[22]. The novel topic discussed in the book about speaker identification appears to be normalization 
and adaptation techniques which are not discussed in the majority of papers. The author introduces 
2 techniques for normalization which is parameter-domain and likelihood normalization. The first 
method is effective for long utterances in text-dependent tasks, and performs well in reducing linear 
channel effects. However, due to its averaging methods over the entire recording, it inevitably 
removes some useful speaker and text information. Hence, this normalization technique does not 
perform well on short utterances. The second normalization technique uses probabilities as its main 
method to normalize utterances. The original idea of likelihood normalization is unreal to implement 
since it requires condition probabilities of all speakers. Thus, approximation methods have been 
developed to make use of this technique. One of such approximations is to treat some speakers as 
“core” speakers that represent the population and calculate only their conditional probabilities. Also, 
choosing randomly selected gender-balanced speakers to calculate probabilities is another approach. 

Another research discusses speaker identification techniques and compares them on features that 
have been converted to vectors using Vector Quantization [23]. Those features are MFCC, LPCC 
and both of them combined. Traditional methodologies such as Hidden Markov Model (HMM), 
artificial neural networks (ANN) are put under test, together with rarely used techniques for speaker 
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identification such as Principal Component Analysis (PCA) and Histograms. The results show that 
histogram based approach performed better with Vector Quantized features. 

In [24], a speaker recognition task has been solved on embedded systems [24]. The stuy 
experimented with MFCC features and developed an architecture of GMM to accomplish the task 
of speaker recognition in embedded systems for home security. The authors concluded that such 
architecture is not very robust to noise and depends heavily on the environment. Additionally, in 
order to achieve higher accuracy values, it is necessary to use a state-of-art methodologies as stated 
by the authors. 

The authors of [25] also conducted experiments to identify the best feature extraction method on 
a small database with a text-dependent setting. The tested feature extraction techniques were MFCC, 
LPC and a combination of them. The database is a very small set of speakers, particularly 20, 9 males 
and 11 females. The experiment tested the architecture on both speaker identification and 
verification. Surprisingly, LPC performed better than MFCC and also better than the combined 
version of features. It also stated to be more robust and stable. 

Dr. Ghahabi in the study named “Deep Learning for i-Vector Speaker and Language Recognition” 
has proposed a deep learning as a backend module for the architecture of i-vectors to recognize 
speaker and the language they are speaking [26]. The author also combined probabilistic linear 
discriminant analysis (PLDA) which gave better performance. The main idea behind creating this 
architecture, according to the author, is that to eliminate phonetic or speaker labels as much as 
possible. Thus, a new vector representation is proposed and named as GMM-RBM, however, after 
testing with the NIST SRE 2010 dataset, the author concludes that the i-vectors perform better than 
GMM-RBM. 

Another research also focuses on language identification using speaker recognition technologies. 
The study “Native Language Detection Using the I-Vector Framework” is a quite interesting study 
which aims to predict the native language of a speaker talking in the second language, particularly 
English [27]. For this purpose, the architecture of i-vectors has been utilized, and in addition, the 
modification of i-vectors has also been tested. This modification is  

In [28], the authors attempted to reduce the computational cost of GMM-UBM model for the 
speaker verification task and the outcome was successful. The dataset consisted of 42 speakers and 
each speaker uttered in total 3 minutes. The authors claim that increasing vector shifts in MFCC 
features not only reduce the computational cost, but also increases the accuracy of speaker 
recognition task. The authors also experimented with the number of speakers dedicated to train 
universal background model and GMM mixtures, however, these experiments did not yield a 
difference in performance or cost. 

As mentioned earlier, speaker recognition is a necessary technology that can be used in courts and 
criminal investigations. The next research is totally focused on such cases, where forensic evidence 
is reported using 3 different speaker recognition methodologies: GMM-UBM, Joint Factor Analysis 
(JFA) and i-vectors [29]. The methodologies are applied to Algerian Arabic dialect. The difference 
of this research from others is that the data collection of forensic evidence is not a controlled 
environment, meaning no one supervises the recording process, but the speech is acquired from other 
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sources, such as telephone conversations. Considering the nature of this problem, GMM-UBM 
would need feature normalization and model transformation since the naïve version of the 
architecture will give unreliable outcomes. For evaluation techniques, Half Total Error Rates are 
used, and it is found that GMM-UBM performed the worst out of these three architectures, and JFA 
and i-vectors are more robust in this setting.  

Some studies focus on real-time speaker identification and verification and therefore, experiment 
with the ways to efficiently optimize the process. One such study is [30] that researches ways to 
implement a real-time speaker recognition system. The authors define the challenge of speaker 
identification task in terms of time complexity which is the fact that time taken for speaker 
identification to complete its process flow depends on the likelihood computations of the given audio 
signal over the database of speaker models. Hence, the number of speakers, complexity of a speaker 
model, dimensionality and feature vectors contribute to the overall time of the pipeline. The authors 
have utilized Vector Quantization (VQ) in testing where, the quantization is applied in test sequence 
before matching. Moreover, the technique of pruning out the least probable speaker models also 
implemented. Together with GMM models, the authors have achieved sixteen times increase in the 
speed. 

Similar to one of the objectives of this study, “Performance comparison of speaker recognition 
systems in presence of duration variability” experiments with the accuracy of the speaker recognition  
system while the duration is changed [31]. The experiments are conducted with GMM-UBM and i-
vectors. It is known that speaker recognition systems heavily depend on the available speech data 
from each speaker. The number of datasets used in this study is two and they both belong to the 
NIST datasets. The first dataset is NIST SRE 2008 and the second one is NIST SRE 2010. Different 
cases of length of speech have been investigated, and the authors concluded that i-vectors become 
better when the length of test utterances increase. Additionally, the authors found that for short 
utterances if there is enough speech data for the model, GMM-UBM outperforms the i-vectors, 
which is a surprising finding since GMM-UBM is an older method and not a state-of-art technology. 

Other authors also tackled the challenge of short utterances as an input to speaker recognition 
systems. The paper “Speaker Identification with Short Sequences of Speech Frame” focuses on short 
utterances, and even on utterances that are shorter than 1 second [32]. This study compares mel-
frequency cepstral coefficients and its performance on short utterances, with the discrete Karhunen-
Love transform (DKLT). The dataset that is worked on is in the Italian language and consists of 5 
different audiobooks voiced by two female and three male speakers. The architecture for training a 
speaker identification model is chosen to be GMM. The study concluded that the DKLT performed 
better than MFCC, due to the fact that MFCC is great at speech recognition but has its own 
limitations and drawback when it comes to speaker identification. 

After discussing the speaker identification problem with short length utterances, large-scale 
databases and challenges of speaker recognition with large databases can be investigated. The 
authors, L. Schmidt and M. Moreno, in the paper “Large-Scale Speaker Identification” have touched 
the problem that could arise in such systems, which is speaker identification needs to perform fast 
search on the large set of speakers [33]. Additionally, the larger the number of speakers exist in the 
dataset, the more is the probability for a trained model to make a mistake, thus, the accuracy values 
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for models trained with large-scale datasets are generally low. The architecture examined is i-vectors 
and together with the given method, the authors also developed a searching algorithm. The algorithm 
is named as locality sensitive hashing and it finds the nearest neighbor in high dimensions very fast. 
The way L. Schmidt and M. Moreno connected i-vectors and hashing function is through cosine 
distance. While cosine distance compares i-vectors, locality sensitive hashing approximates the 
cosine distance in a quick manner. The dataset the authors used is acquired from Youtube with about 
one thousand speakers. It consists of more than 40 thousand 10-second, more than 40 thousand 20-
second, and more than 20 thousand 60-second audio recordings. The study concludes that without 
changing or decreasing the accuracy of the speaker identification method, this hashing function 
improved the speed of the searching from one to two magnitude order. 

Another research has been conducted to better represent audio signals and provide robust features 
since feature vectors are the most crucial part of speaker identification. The performance of the 
model heavily depends on how a method or technique represents the audio frames and what useful 
information it derives. Hence, the authors of the study [34] developed a new approach for a purpose 
of making audio features more robust. This new method is named hierarchical classification 
approach. It consisted of several layers that capture different information. For example, the first layer 
holds information about the gender of the speaker, and the next layer holds information about the 
characteristics of the speaker’s voice. According to the study, other feature extraction methods also 
achieved good results, but the new architecture also reduces the computational time. The architecture 
used in this paper is simple random forest. The result is that for male speakers the identification 
model scored 78%, while for female speakers the model scored higher, 88.7%. Additionally, gender 
classification is performed at 96.9%. 

The research in [35] suggests to add additional information to features of audio signals in order 
to increase the accuracy of speaker classification. The information to be added is duration of speech 
units such as phonemes or Hidden Markov Model (HMM) states that make up a phoneme. The study 
forms vectors using Gaussian mixtures and uses universal background model to capture speaker 
related information present in the audio signals. The findings of the study are that the accuracy has 
increased when the model uses the durational information about phonemes. The authors found that 
even more accurate results can be achieved if lexical features are also added to vectors. Moreover, 
the last finding of the study is that with longer test samples, accuracy again improves. This study is 
very similar to the current study, but with an older methodology. 

The next study conducted by R. Karadaghi is named as “Open-set speaker identification” writing 
of which is motivated by criminal investigations [36]. Since the number of speakers possible 
speaking a voice in the audio is not known, this model needs to be open-set, meaning given audio 
may contain voice of unknown person or, in other words, the person out of our training dataset. The 
author explains the challenges of this task such as environment and background noise because 
usually audio speech used in criminal investigation are not recorded in a supervised manner, hence, 
the noises of street and voices of other people talking near are expected which makes the task more 
difficult. In addition, the duration of audio recordings also varies due to the same reason. By 
conducting this study, the author introduced a novel term called “vowel boosting”. The results of the 
study showed that the vowels within the voice of a person have more speaker information that can 
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be useful, thus, “vowel boosting” was introduced. It claims to increase reliability in speaker 
identification task where length of audio recordings varies. 

Another study with the similar topic from the same author collectively working with H. Hertlein 
and A. Ariyaeeinia focuses on short audios that have various duration values [37]. Two architectures 
are compared on the same dataset which are GMM-UBM and i-vectors. The dataset used in this 
study is NIST speaker recognition evaluation corpus of 2008. The experiments showed quite 
interesting results that also align with previous papers discussed earlier. When the data for a model 
to learn is sufficient, i-vectors together with within-class covariance normalization (WCCN) used 
for variability compensation for the same speaker performed better than GMM-UBM, however, 
when the data is short and the duration of audio recordings varies, the performance and accuracy of 
i-vectors are not different from GMM-UBM. These experiments conclude that depending on the 
nature of data, its length and average duration, one should choose a speaker identification 
methodology carefully. 

1.5 Assumptions and Limitations 
This study of speaker identification assumes that tested speakers will be previously known ones from 
our database. It is a closed set task, meaning if other out-of-database speakers are given to the system, 
they will not be correctly identified as unknown, but will be mapped to any similar speaker. This is 
not secure for applications in any sort. Only case of application is that we are hundred percent sure 
that tested speakers will certainly be from our known set, which rarely happens in the real world. 
However, for the case of experiments and studies, this feature of the task can be tolerated. 

Furthermore, not only speaker identification, but also any field working with human voices has 
to consider the fact that a person's speech is subject to change depending on age, health and emotional 
state. In addition, background noises are an inevitable part of recordings which affects the accuracy 
of systems working with human voices [38]. Background noise and the quality of the input device 
(the microphone) can create additional challenges for voice recognition systems. These factors make 
the systems not robust, since depending on the time of the day, background noise, health of a person 
and a gradual change in a person’s voice over years, the systems achieve lower accuracy values. This 
is an ongoing problem in the speech field and researchers try to partially solve it with augmentation. 
This study also utilizes the augmentation with various noise and reverberations in order to form a 
robust model. 

Speaker recognition systems are also vulnerable to malicious attacks. If a recording of an 
authorized person would be acquired and replayed to the system, the system will unintentionally 
give a permission to an unauthorized person. This is called a replay attack. The way researchers and 
developers cope with this is storing each session uniquely and comparing the given recording with 
the database records [39]. The idea is that a person can not utter the words in the same exact manner 
and in the same exact background, thus, if the given recording exactly matches a record in the 
database, it means someone acquired a recording illegally and replays it back to the system. Replay 
attacks further included text-to-speech technologies to create a voice sample of the authorization 
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phrase from speech samples of an authorized person. However, this approach needs a lot of speech 
data from an authorized person, and researchers have already developed methods to differentiate 
synthesized speech from a real one. To sum up, speaker identification and verification has its own 
challenges when it comes to security, and each side of the battle, either attackers or defenders, tries 
to come up with new methods to outsmart the other side. Although security is a huge concern for 
nowadays systems, this study does not focus on this aspect and does not perform experiments on the 
robustness of models on this matter. 
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2 RESEARCH APPROACH OR METHODOLOGY 
The next subsections give insight about how humans generate voice and how technology captures it 
and acquires necessary information.  

2.1 Anatomy of Speech 
As human-beings, we are capable of understanding speech and differentiating voices of other human-
beings. How are these voices generated? There are three processes going on sequentially when we 
speak. The first part is producing basic sound that will eventually be a spoken word. This basic sound 
is generated by vocal fold vibration and often called “buzz” sound. Organs actively taking part in 
this process are lungs and vocal ford. The second step is resonating an incoming sound. The organs 
participating in the resonance process are throat, oral cavity and nasal cavity. In this step, “buzz” 
sound is modified and amplified, producing a unique sound. Next, this amplified sound is modified 
by the organs that are last in this chain of speech production which are mouth, tongue, lips and teeth. 
These organs modify the incoming sound generating recognizable words. In summary, vibration, 
resonance and articulation form the process of speaking which is, in general, air in our lungs 
transforming to the spoken words that we understand. The second stage in this process produces a 
unique sound, hence, speaker recognition focuses heavily on this part. The last part in the process is 
where speech recognition mainly focuses on. 
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Figure 1: Voice production organs and anatomy of speech production. This picture is acquired from [40]. 

Due to the fact that our vocal tract shapes, glottis sizes and other voice producing organs are different, 
no two humans sound the same and each voice is unique. In addition, our voices are also unique 
because of different speaking and pronunciation styles and different choice of vocabulary. Our 
voices are so various that even the same person cannot utter the same phrase or sentence in the exact 
same manner. These factors, however, should not contribute to the fact that voice can be used as a 
biometric authentication which in fact, is not true. Even though two human-beings can be 
differentiated using the information about their voices due to the fact that they are certainly different, 
biometrically identifying a human-being with his/her voice cannot be implemented with a high 
accuracy. This is because voice is not as stable as fingerprint or eye retina, it changes not only in 
long-term as years due to aging, but also in short-term as days due to mood, health and time of the 
day. Because of these reasons, voice is not used by researchers and developers as a biometric 
authentication method, but it is still a very useful identifier and verifier method. 

We understood how our voices are anatomically different, but how do computers understand the 
difference? First of all, the speech produced by us - humans needs to be converted and transformed 
to the format which computers would understand to further work on them. The sound is converted 
to binary format by transforming it to the digital sound from the original analogue version. This is 
done by dividing an audio recording into audio frames, which are a basic temporal fragments of the 
recording. Their length varies from 10 milliseconds to 50 milliseconds. Such digital coding 
attempts to represent the analogue signal accurately so that later, the reconstruction of the same 
signal would not lose its values. However, researchers are not concerned with reconstructing the 
audio signal, but representing it with useful parameters and features. Therefore, the frames that 
make up an audio signal are used to generate features that will represent the audio signal in the 
most informative way possible. The researchers and programmers have found two ways of 
representing sound, which are temporal based and spectral based [41].  

Time based representation is soundwaves we usually see in music players. The sound is 
represented as frequencies over a time interval and depicted as waves in music players or any other 
programs working on sounds. The computer acquires numbers which are frequencies over a time 
interval and processes them. Below is a picture of the author saying a random sentence “I like this 
class, kind of” represented in a time-based manner (Figure 2). 
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Figure 2: A visual representation of time-based sound representation of a sentence “I like this class, kind of” 
by the author. 

On the other hand, spectral representations transform audio signal from time-space to frequency-
space that has more information and easier to work with. They are distribution of amplitude over 
frequencies, and also called frequency spectrum. When we visually represent the spectrum of 
frequencies, we obtain an image which is called a spectrogram in speech field. Spectrograms 
display not a single number of a frequency over a time interval, but a spectrum of frequencies. 
Figure 3 displays the same sound in Figure 2 as a spectrogram. 
 

 
Figure 3: Spectrogram of the same random sentence “I like this class, kind of” as in Figure 2. 

Looking at the spectrogram, one can observe that colors are changing in the image depending on the 
segment of audio signal. Each segment has a dominant frequency called formant or energy. The 
dominant frequencies are easily distinguishable by their color. The lighter the color, the dominant is 
the frequency, thus, one can observe the formants in the relatively bottom part of the image. 
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Inspecting the form of these formants over the frequency domain, and collecting them gives us the 
tone of the speaker. This information is very crucial for the technologies or methods to identify 
speakers and differentiate between them since tones existing in the audio signals uniquely represent 
the speaker. 

Many algorithms work on frequency-based representations and transfer the frequencies into 
meaningful information. Examples for such algorithms can be Perceptual Linear Predictive (PLP) 
[42], Linear Prediction Coefficients (LPC) [43], Linear Predictive Coding Cepstrum (LPCC) [44], 
Real Cepstral Coefficients (RCC) [45], Mel Frequency Cepstral Coefficients (MFCC) [46], etc. The 
Table 1 lists 7 features by popularity and shows their representation, whether it is temporal of 
spectral. Algorithms working with sounds on spectrograms are Convolutional Neural Networks 
(CNN)[47] which take input as images of the sounds. This paper will discuss only the first type of 
methodologies, where the input is numbers in matrices, not pixels of images. 

Table 1: Features and their representations. The information in the table is derived from [41]. 

Feature Name Representation (Temporal, Spectral) 

Short time energy or root mean square (RMS) or 
spectrum power or volume or loudness 

 

Temporal 

Zero crossing rate (ZCR) 

 
Temporal 

Mel-frequency cepstral coefficient (MFCC) 

 
Spectral 

Spectral centroid or brightness or frequency 
centroid 

 

Spectral 

Short time fundamental frequency or pitch or 
harmonic frequency 

 

Spectral 

LPC-derived cepstral coefficients (LPCC) 

 
Spectral 

Linear predictive coding (LPC) Spectral 
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In general, the algorithms extracting a unique voice of a speaker creates segments of sound that 
consist of many dominant frequencies. These dominant frequencies are called formants and can be 
seen in Figure 3 by lighter colors in the bottom of the image. Together they form a tone of a voice 
and it can be saved in a digital format, similar to fingerprints or any other biometric data, which 
will serve a purpose of identifying a speaker. 

2.2 Speaker Identification versus Speaker Verification 
After we understand how voices are produced and how unique they can be, we can focus on how 
algorithms work to differentiate voices of speakers. To discuss technologies used to accomplish the 
task of speaker identification, one should understand its difference from speaker verification. 
Speaker identification is the process of identifying a speaker based on his/her voice. This task can 
be closed set or open set. A closed set speaker identification is identifying a speaker in the set of 
known speakers, and if any unknown speaker voice is given, the system will try to match it with the 
most similar speaker voice in the dataset. Such systems can be useful, if we are certainly sure that 
no other speakers or imposters would use the system. On the other hand, open set speaker 
identification takes into account the possibility that a given voice for identification may be out of the 
known speakers of the system. 

While speaker identification answers the question “Who is speaking?”, speaker verification 
answers the question “Is this person who he/she claims to be?”. The input is not only voice, but also 
the claimed identity. The Figure 4 depicts the differences of these two fields of speaker recognition 
in a clear way. 
 

 
Figure 4: The main difference between speaker identification and speaker verification. This image is created  
and modified using the similar image from [48]. 

Figure 5 and Figure 6 depict the process flow of speaker verification and speaker identification, 
respectively. The speaker verification system takes the voice, and compares it with the speaker model 
of the claimed identity. Based on the similarity, the verification model gives a score to be inputted 
to the threshold. If the model of the claimed identity and a given voice match, the system accepts the 
speaker, if not, declines him/her based on the predefined threshold. On the other hand, speaker 
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identification does not require the information about the claimed identity. The model tries to find the 
identity itself based on the maximum value of similarity scores with each speaker. It is necessary to 
mention that speaker identification can be open-set or closed-set problem. When the task is a closed-
set, it means the model assumes that every given audio input will definitely belong to one of the 
speakers whom it already saw and learnt about. Therefore, the identification number of the found 
speaker is returned. However, if speaker identification is open-set, it is not certain that the voice 
belongs to the known speakers. In such case, additional check is required to implement, where the 
confidence is checked with a defined threshold. Another difference between these systems is that, 
speaker verification is a binary task, either yes or no, whereas, identification is a multiclass task. 
Furthermore, the increase in the number of speakers does not affect verification, but hugely affects 
identification since the system performs a search on known speakers to find the correct one. These 
two systems, both speaker identification and verification, together form a speaker recognition task. 
The algorithms and methodologies discussed in this section are for the use in speaker recognition, 
thus, applicable to both verification and identification tasks. The only difference in the approach is 
the end stage of evaluation where identification does a search based on an utterance and verification 
compares a speaker model with an utterance.  
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Figure 5: The flowchart of speaker verification. This image is acquired from [49]. 

 

Figure 6: The flowchart of speaker identification. This image is acquired from [49]. 

2.3 Technology 
As mentioned earlier, speaker recognition technologies started to develop as early as from 1960 [4]. 
At that time, algorithms were a simple template matching using frequency spectrum. Later in the 
1970s and 1980s, features changed from frequency spectrum to LPC, LPCC, and at the end, MFCC. 
The algorithms were Dynamic Time Warping [50], which still matched sequences, and Hidden 
Markov Model (HMM) [51] which transferred the algorithms of speech and speaker recognition 
from template-based to statistical-based models. Starting from the 1990s, with the introduction of 
the Gaussian Mixture Models [52], the main speaker recognition approach has changed to use this 
flexible, robust and efficient method for that time. Later in 2000, Gaussian mixture model-Universal 
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background model (GMM-UBM) [53] was developed by the same author, D. Reynolds, and acquired 
huge popularity since it enabled researchers to train practical applicable models in the real world. 
This method created one background model called Universal Background Model (UBM) that 
captured all information and voice patterns of all speakers and later adapted it to create Gaussian 
Mixture Model (GMM) for each speaker. Some adaptations were also developed which were GMM-
HMM and GMM-SVM that combines the model with Hidden Markov Models and Support Vector 
Machine. The Figure 7 depicts the architecture of GMM-UBM for the task of speaker recognition. 
The pipelines for both speaker identification and verification can be easily observed. 

 
Figure 7: Architecture of GMM-UBM for speaker verification and identification. This picture is acquired 
from [54]. 

In the 21st century, two new approaches were created which made use of GMM-UBM 
methodology and its logic. These methods were Joint Factor Analysis (JFA) [55] and i-vectors [56], 
which represent each utterance with vectors. Additional to these main methods, back-end techniques 
have also been developed in the 21st century which include but are not limited to within-class 
covariance normalization (WCCN) [57] and probabilistic linear discriminant analysis (PLDA) [58]. 
These techniques contribute to discriminating speakers even more in evaluation phase of new 
utterances given to the system. 

The i-vector approach, introduced in 2000, is very similar to JFA. JFA represents the GMM mean 
supervector by four components [59]. The approach also stores the variability in channels and 
speakers similar to GMM-UBM and uses all these information as variables in a mathematical 
formula of 

 
𝑀 = 𝑚 +𝑈𝑥 + 𝑉𝑦 + 𝐷𝑧 (1) 
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where m is a GMM supervector which is independent of speaker and channel variances, U is a 
subspace of sessions in a matrix form and V is a subspace of speakers in matrix and D is a diagonal 
matrix that together form M, which is a GMM supervector with session and speaker information. 
The variables x, y and z are random vectors with a standard normal prior. The formula for i-vectors 
is similar, except all variabilities, be it channel or speaker, are combined into one variability matrix 
[59]. The formula for this approach is 
 

𝑀 = 𝑚 + 𝑇𝑤 (2) 
 

where we need to find w that represents i-vectors when M is GMM mean supervector of an utterance, 
m is UBM mean supervector and T is total variability matrix which holds speaker and channel 
variability. I-vectors were very popular for representing utterances and applying them in speaker 
recognition. However, the disadvantage of i-vectors and other previous generative models is that 
these architectures were utilizing unsupervised learning. Therefore, they intrinsically aimed to 
generate a distribution of acoustic signals, not differentiate speakers. Ten years later in 2010, as 
neural networks took a rise among the machine learning field, a new method was developed similar 
to i-vectors. The idea stayed the same because representing utterances as vectors makes it easier to 
differentiate and find similarities between recordings with simple methods. The difference was in 
the approach. While i-vectors have a clear mathematical formula for finding vectors, this new 
method took second to the last layer of neural networks and used it to represent utterances. These 
vectors were named as x-vectors and they performed better than i-vectors [3]. D. Synder and other 
authors of this new system have tested i-vectors and x-vectors with publicly available datasets, which 
are SITW Core and SRE16 Cantonese in [3]. The results show that x-vectors were at least 1% and 
at most 4% better than i-vectors in the task of speaker recognition. This study has been conducted 
using the latest technology in speaker recognition which is x-vectors. 

Below is a figure that represents the summary of speaker recognition history (Figure 8). It depicts 
how feature extraction and technologies have evolved starting from 1930 to our days. It also shows 
when practical use of speaker recognition technologies have changed from small scale to large scale. 
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Figure 8: History of speaker recognition technologies and features. This picture is acquired from [4]. 

After the creation of new models such as i-vectors and x-vectors, speaker recognition architecture 
took a clear form (Figure 9). The architecture of speaker recognition with the latest technologies 
consists of 3 distinctive parts: the first part is training where lots of recordings of different speakers 
are given to the model to extract features. Each recording gets a preprocessing where Voice 
Activation Detection (VAD) [60] is applied to get exact frames of voice and disregard silent frames. 
The discussed embedding vectors have different way of acquisition in this phase. While i-vectors 
make use of universal background model and adaptation of it with speaker and channel variations, 
x-vectors make use of artificial neural networks and represent the audio signals with a layer in neural 
networks. This difference is depicted in Figure 10. 

As mentioned above, the extracted features are vectors that each represent a different utterance 
and are unique in nature. These vectors are fed into the second phase, which is named as enrollment 
phase, where speaker models are acquired from them. The features of a speaker can be averaged to 
get a model of that speaker. So far described two phases can be observed in Figure 11.  
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Figure 9: The architecture of a speaker recognition system. 

 

 

Figure 10: Comparison of pipelines of speaker recognition with i-vector and x-vector architectures. This 
image is acquired from [61]. 

 

 
Figure 11: Pipeline of speaker recognition. This image is acquired from [61]. 

The third phase is evaluation, and it differs for speaker identification and verification. In speaker 
identification, the evaluation phase is calculating probabilities of a recording belonging to 
speakers. An incoming recording passes through feature extraction and then its features are 
compared to those of other speakers. At the end, we get probabilities of a recording belonging to 
speakers in our known set. 
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After an overall architecture is explained, more detailed and technical features of the 
architecture used in this study can be discussed. The first part of the architecture - feature 
extraction makes use of Time Delay Neural Network (TDNN) [62]. This network structure takes 
into account the current frame and frames before and also after the current frame. In general, one 
can say that TDNN is taking context into account when learning. A general idea and workflow of 
this network is depicted in Figure 12. The output of this process is speaker embeddings which are 
called x-vectors. X-vectors, as discussed earlier, are an efficient and compact way of representing 
audio recordings and are, in fact, a layer within a network. 

 

 
Figure 12: Time Delay Neural Network. This image is acquired from [63]. 

Figure 13 describes this process in more detail. As generally shown in the image, the overall 
architecture consists of 5 hidden layers using rectified linear unit (ReLU) [64] activation and batch 
normalization, a statistics pooling layer, 2 hidden layers to reduce dimension and a softmax layer. 
Speech feature frames are inputs to the first frame-level layers. These layers capture the temporal 
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information taking into account adjacent frames and, by that, the context. The pooling layer, which 
is coming next, aggregates the information outputted from the last frame-level layer. It calculates 
mean and standard deviation across frames of a utterance and converts information in the process-
flow from frame-level to recording-level. This is why the next two layers after pooling are named 
as recording-level layers, and they, in fact, represent utterances. Even though these layers can both 
represent the utterances, the first and the second layers were compared conducting experiments and 
it was found by an empirical way that the first layer gives more accurate representation [3]. 
Therefore, the first layer after the pooling one is where we get our embeddings. The last layer is a 
softmax layer that gives each class a probability of uttering the given recording input. Based on the 
result and the ground truth, backpropagation updates weights and the model to be more accurate. 
 

 
Figure 13: TDNN architecture of speaker recognition. This picture is acquired from [61]. 

Table 2 gives additional information about the layers within TDNN. For each nine layers, layer 
context, the number of total context and the size of input and output of layers are given. With the 
given input having T frames in total, t is our current time frame. The first 5 layers, which we 
named earlier as frame-level layers, add more context and by that, increase the size of the total 
context. Hence, starting with 5, the last layer has in total 15 time frames. The statistics pooling 
layer aggregates the output from frame 5 across T and finds the mean and standard deviation over 
T and stores it in the vector of size 1500. Since the statistics layer aggregates the outputs, 
consequent layers work on context {0} and the size of T which means an entire recording. The 
next layer is our embedding layer x-vectors and till this point and including it, there are 4.2 million 
parameters. 
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Table 2: Architecture of TDNN layer by layer. 

Layer Layer Context Total Context Input x Output 

Frame 1 {t-2, t+2} 5 120x512 

Frame 2 {t-2, t, t+2} 9 1536x512 

Frame 3 {t-3, t, t+3} 15 1536x512 

Frame 4 {t} 15 512x512 

Frame 5 {t} 15 512x1500 

Statistical Pooling [0, T) T 1500Tx3000 

Segment 6  {0} T 3000x512 

Segment 7 {0} T 512x512 

Softmax {0} T 512xN 

 
The architecture of TDNN and x-vectors for speaker identification can be found in the toolkit 
named SpeechBrain [65] and it is also used in this study for conducting experiments. SpeechBrain 
is a public, accessible, easy-to-use tool that is aimed to deliver speech functionalities in a holistic 
way as our brain does [66]. The configuration of training is an easy process where we need only 
modify the human-readable train.yaml file to obtain the training configuration we want. Moreover, 
the availability of clear documentation with examples makes it easier to start working with the 
toolkit, understand the code and modify, if necessary.  

The dimension of x-vectors used in the experiments conducted in this study is 512. The 
features are filterbank features of input signals derived from 23 Mel filters which are used to 
average the spectrogram banks. The activation function used in the training of neural networks is 
different from the original architecture and is LeakyReLU - Leaky Rectified Linear Unit that adds 
a small slope for negative values compared to ReLU that has a flat slope [67]. The optimizer is 
Adam optimizer instead of classical stochastic gradient descent as it handles sparse gradients on 
noisy problems. There are 5 TDNN blocks and their channel sizes vary as 512, 512, 512, 512, 
1500. The last value is changed during experiments for better fitting. 
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3 RESEARCH RESULTS AND ANALYSIS OF RESULTS 
This section introduces the different datasets used in this study and describes experiments conducted 
with these datasets at the same time analyzing the results. 

3.1 Datasets 

3.1.1 English AudioMNIST Dataset. 
The first dataset used in this research is the English dataset named AudioMNIST digits [68]. It is an 
audio version of a popular MNIST (Modified National Institute of Standards and Technology) 
database which consists of images of handwritten digits. The AudioMNIST dataset has 60 speakers 
and each of the speakers has uttered digits from 0 to 9 fifty times, thus, the total number of recordings 
are 3000. The audio recordings are at 48 kHz. Its total duration is 5 hours and 21 minutes. 

Different subsets of the dataset have been used in the experiments. In addition to using all of the 
data, various subsets have been generated and used for training and testing in the experiments. The 
training datasets are usually 5 digits concatenating together various number of times. These training 
subsets are the following: only 5 digits of the dataset from 0 to 4 uttered 50 times, and from 0 to 4 
uttered only 5 times. Test datasets are a subset of the all data and also a subset of the dataset from 3 
to 7 uttered 50 times for the first training set. For the second and third training sets, test sets are from 
0 to 4 and 5 to 9 uttered 50 and 5 times, respectively. Lastly, the third training tests an additional 
subset from 3 to 6 uttered 5 times. The sample rate of these recordings is 48 kHz. The ratio of female 
to male speakers is 20:80. 

3.1.2 Azerbaijani AudioMNIST Dataset. 
The Azerbaijani dataset is similar to the previous English dataset. There, 59 speakers have uttered 
digits from 0 to 9, but various times. Some speakers uttered the digits 10 times, some less and some 
more. On average, each speaker uttered digits 5 times. This variety complicates the problem. 
Nevertheless, the same test and training datasets have also been created for the Azerbaijani dataset. 
The sample rate of these recordings is 16 kHz. The ratio of female to male speakers is 32:68. Its total 
duration is 1 hour and 17 minutes. This dataset was collected during the research with the help of 
ADA University students and is shared to the web for the use of the public [69]. 

The division of this dataset to train and test sets is similar to the English dataset. The training 
datasets are concatenation of 5 digits from 0 to 4. The first training set concatenates all repetitions 
of digits, which makes the number of samples various for each speaker since each of them uttered 
digits different number of times. The second training set concatenates only 4 repetitions as it is the 
largest number of samples each speaker has in common. The testing sets are also similar to the 
previous dataset. The concatenation of all digits and digits from 3 to 7 were created for the evaluation 
of the first training, and concatenation of digits from 0 to 4, 5 to 9 and 3 to 6 repeated 4 times are 
created for the second training. 
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Additional to the sequential order of digits, the study also experimented with subsets of the digits 
which were phonetically divided so that both train and test sets will have the same vowels within 
digits. The more detailed explanation on how the digits are grouped can be found in the 
“Experiments” section and “Experiments on the AudioMNIST Datasets” subsection. 

3.1.3 Azerbaijani DAC Dataset. 
This dataset not only has digits from 1 to 9 like previous ones, but also has commands that speakers 
uttered, hence, named as Digits And Commands (DAC) dataset. The dataset was also collected 
during the research with the help of ADA students like the previous Azerbaijani dataset, however, it 
is not publicly shared and is accessible only for ADA students. The commands in the DAC dataset 
are popular voice commands which are usually asked from mobile phones, like “What is the weather 
today?”, “Call my mom”, “Open contacts” and etc. There are in total 29 speakers and 86 texts, 
consisting of 9 digits and 77 commands. The sample rate of these recordings is 48 kHz. The ratio of 
female to male is 38:62. In total, this dataset is 17 hours and 42 minutes. 

An updated dataset is also extracted from the current dataset, named DACW. The DACW dataset 
consists of chosen 20 speakers from the speakers set who uttered all commands and digits. Their 
female to male ratio is 45:55 which is a more balanced set of speakers out of all data sets. This dataset 
has 9 digits and 71 commands uttered. Some commands were removed which had less than 3 times 
repetitions making 72 commands out of 77 and one more command which had 5 words in it was not 
used, making in total 71. Each utterance is on average 10.3 seconds and has on average 293.5 files. 
Each speaker uttered each text about 14.7 times. The least amount of average repetition made by a 
speaker is 6.8 times and the most is 27.6 times. In total, it is 15 hours. 

The DACW dataset was created to test the relationship of speaker identification to the duration of 
recordings. Therefore, DACW has 3 parts in it. The first part of the dataset - DACW-2 has only two 
word commands in it. There are 48 commands that have two words and 45 of them are used. The 
second part, DACW-3 has 3 word commands. In the original dataset, there are 27 commands and 25 
of them are used. The additional 20 commands were generated using two word commands and one 
word digits making in total 45 utterances. The last part of the dataset is called DACW-4 consists of 
4 word commands. The number of original utterances is 1, thus, 44 new commands were generated. 
These newly generated utterances are either combinations of original three-word commands and 
one-word digits, or combinations of two two-word commands. At the end, all datasets - DACW-2, 
DACW-3 and DACW-4 have 20 speakers and 45 utterances. The sample rates are kept as in the 
original dataset. Because each recording in DACW-4 is longer than DACW-3, and each recording 
is DACW-3 is longer than DACW-2, the total duration of these datasets differ by around an hour so 
that DACW-2 is 2 and half hours with 4404 files, DACW-3 is 3 and half hours with 4171 files and 
DACW-4 is 5 hours with 4112 files. The number of files are similar. The content of these datasets 
consists of the same commands and combinations of them, but no two utterances are identical in 
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these sets. Repetitions of each command were exclusively divided into three parts to be used in 
generating these datasets. 

3.1.4 RIRS Dataset. 
RIRS dataset is an augmentation dataset used to enrich the datasets for training [70]. It is named as 
Room Impulse Response and Noise Database, and as the name suggests it is a database of real and 
simulated room impulse responses and noises. Room impulse response is a transfer function between 
the original sound source and the microphone. The noises in this dataset have two types: isotropic 
and point-source. Isotropic noise is a kind of sound that emits equal power in all directions [71] and 
point-source noise emits spherical spreading in all directions [72]. The RIRS dataset combines real 
RIRs from many available datasets and generated ones by the authors. The point-source noises are 
taken from a very popular database named MUSAN [73]. There are 843 point-source noise files and 
325 real RIRs files. The simulated RIRs are divided into three sets which are small, medium and 
large rooms. Each room set has 200 folders with room numbers on it and each such room folder has 
100 simulated RIR sounds. In total, small, medium and large rooms together have 60 thousand files. 
All the files in the RIRS dataset are in 16kHz. 

3.2 Experiments 
The dataset in all experiments have been splitted into 80% train, 10% test and 10% validation. Train 
set is used to train our model and learn how to differentiate speakers. With the validation set, we 
tune the hyperparameters of the model to learn better by observing how better it becomes on 
identifying the validation set. After training is done, accuracy is calculated using the test set and 
observing how our trained model performs on unseen data of learnt speakers. 

3.2.1 Experiments on the AudioMNIST Datasets. 
The first set of experiments have been conducted on the English AUDIO MNIST dataset. 10 digits 
uttered by 60 speakers were merged together and grouped by the number of repetition that is uttered. 
Hence, if a speaker utters each digit 50 times, making 500 files, in total, concatenating these digits 
together results in 50 longer files. On average, each speaker spoke 5.24 minutes. With 80% of this 
dataset, the training gave very high results. When tested with a test set that is unseen to the model, 
the model gave 99.4% accuracy. Testing the model performance on all dataset, including train set 
and also validation, gave 99.8%. When tested with a subset of these known digits consisting of 3 to 
7, the accuracy stays the same, which means subsets of the train set are also recognizable. 

Further experiments are conducted to check the performance on a subset that is out of the train 
set. For that, a new subset is created consisting of digits from 0 to 4. This set has an average of 4.47 
minutes for each speaker. The experiment also resulted in high accuracy with 99.9% accuracy. 
Another subset of digits consisting of a sequence from 5 to 9 is used to test this model and understand 
if the model has any relationship with the spoken text. It turns out that the relationship exists since 
the model scored 34.1% for unseen digits. 
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The experiment was conducted again but with less number of repetitions, particularly 5. With a 
90% decrease of files, the average time per speaker decreased to 27 seconds, on average. The test 
accuracy is 96.7% for digits 0-4. When tested with an unknown set of digits - from 5 to 9, the 
accuracy dropped 15.3%. This could indicate that some sense of text dependency exists. Another set 
of digits - from 3 to 6 is also created to test the model. This set consists of two numbers, 3 and 4, 
from known, and the other two numbers, 5 and 6, from unknown digits sets. The accuracy of the test 
set was 29.3%, which is an almost twice better result than the previous set where all digits were 
unknown. The experiments are depicted in the table below (Table 3). 

Table 3: Results of experiments on the English AudioMNIST dataset. 

Combination The number of 
speakers 

Utterances Average Time Accuracy over all 
dataset (%) 

Accuracy over test 
dataset (%) 

60x10x50 60 0-9 5.24 minutes 99.79 99.4 

 60 3-7   99.36 

60x5x50 60 0-4 4.47 minutes 99.97 99.90 

 60 5-9   34.11 

60x5x5 60 0-4 27 seconds 97 96.67 

 60 5-9   15.33 

 60 3-6   29.33 

 
The experiments conducted on the english digits dataset were repeated with the Azerbaijani dataset. 
The difference and also a challenge of this dataset is that the dataset in the Azerbaijani language 
varies in terms of the number of repetitions each speaker made while uttering a digit. Therefore, 
there is a question mark in the first cell of Table 4 because the number of repetitions is unique for 
each speaker. In addition to the repetitions being inconsistent and less than the english dataset, the 
cumulative average time is also less. It is 2 minutes for each speaker, twice less than the english 
dataset. Using 80% of all utterances for training, we acquire 85.3% for the test set. It is 14% less 
than the results obtained with the english dataset, but this was expected due to the factors mentioned 
above. The subset of the trained digits also resulted in the same accuracy. 

In the next experiments the repetition number is fixed to 4. Excluding the speakers who uttered 
digits less than 4 times, the resulting set has 36 speakers. The average time of utterances is 48 
seconds. The average duration being more than the english dataset is due to the reason that digits in 
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the Azerbaijani dataset are sometimes uttered longer. This set gave 86.7% accuracy on identification 
of speakers. Similar to the previous experiments, when tested with an unknown set of digits(from 5 
to 9) the accuracy dropped to 53.3%. Combining two known and two unknown digits to the testing 
set, the accuracy increased 13%, resulting in 66.7%. The results are similar to the ones with the 
english dataset. The information about these experiments can be observed in Table 4. 

Table 4: Results of experiments on the Azerbaijani AudioMNIST dataset. 

Combination The number of 
speakers 

Utterances Average Time Accuracy over 
all dataset (%) 

Accuracy over 
test dataset (%) 

59x10x? 59 0-9 2.02 minutes 96.71 85.3 

 59 3-7   85.29 

36x5x4 36 0-4 48 seconds 97.92 86.67 

 36 5-9   53.33 

 36 3-6   66.67 

 
Considering the first two experiments in Table 3, we can see that the model identifies the subset of 
the trained digits. Even though the training set is from 0 to 9, any subset (from 3 to 7 in this case) 
can be used to identify speakers. The next 2 experiments show that when the training set is from 0 
to 4, the test set of 5-9 gives really low accuracy. The next experiment was conducted to see the 
accuracy rate when speakers will only utter the digits 5 times, which gives pretty decent results. 
Again, when trained with 0-4, 5-6 gives low accuracy when tested. Combining 2 digits from the train 
dataset and 2 out of train dataset shows higher accuracy than the previous test, which concludes that 
the model depends on the digits and not the voice of the speaker. 

In Table 4, we can see similar experiments that conclude the same idea. Because the number of 
utterances change for speakers, we have collected those speakers that have uttered each digit at least 
4 times. This gives 36 speakers for the last 3 experiments. However, the test results are low due to 
the smaller dataset which brings overfitting. This gap between training and test has been mitigated 
from test being 70% to 80%, but still the issue exists. When more data will be collected as a future 
work, this problem will be resolved. 

Another issue with the experiments is that only one way of text-dependency is tested which is 
training digits from 0 to 4 and testing with other digits. It could be the case that the model trained 
with sounds of letters in digits from 0 to 4, never sees and understands sounds existing from 5 to 9. 
In that case the observed phenomenon would be not a text-dependent characteristic of the 
architecture but adapting to and learning the training set. Therefore, new experiments have been 
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conducted where digits are sorted in both ways: sequential, and also phonetical. The sequential order 
of digits is defined as from 0 to 4 and from 5 to 9. Both used as training sets and test sets. In order 
to create phonetically correct datasets, the sounds forming the digits must be observed in detail. 
There are in total 9 vowels in the Azerbaijani language and all of them are used in digits. Table 5 
shows which vowels exist in which digits, and the following sounds in brackets approximate these 
sounds to English ones. 

Table 5: Digits in Azerbaijani and the corresponding vowels sounding when uttering them. In brackets, it is 
written how the vowel approximately sounds in English. 

Digit Vowels 

0: Sıfır ı (eu) 

1: Bir i (ee) 

2: İki i (ee) 

3: Üç ü (ew) 

4: Dörd ö (eo) 

5: Beş e (e) 

6: Altı a (ah), ı (eu) 

7: Yeddi e (e), i (ee) 

8: Səkkiz ə (a), i (ee) 

9: Doqquz o (oh), u (oo) 

 
Using this information, the train and test datasets were divided into groups such that each vowel 
would appear both in train and test to eliminate the hypothesis that the model reacts to sounds 
existing in the training set. There are 3 groups formed: 

1. a = {5,6,8,9}. These digits hold the unique vowels to be used in the training set. 2 vowels 
(u) and (o) from the digit 9, and 1 vowel (ə) from the digit 8 do not exist in any other digit. 

2. b = {0,1,2,7}. The vowels in these digits are repetitions from the training set and will be 
used for testing. In this manner, the vowels seen in the training set will also be seen in the 
test set, so text-dependency will be texted again in a more challenging way. 
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3. c = {3,4}. These digits also hold unique vowels that do not exist in other digits. The 
experiments will sometimes include one for training, and another one for test, or all for 
training or all for test. 

The experiment settings with these new digit groups will be as in Table 6. 

Table 6: Phonetic experimental setting of Azerbaijani AudioMNIST dataset with digit groupings. 

Train Test 

c1+a c2+b 

c2+a c1+b 

c1+c2+a b 

a c1+c2+b 

 
The experiments to check text-dependency of a model both in sequential and phonetic way were 
conducted using less number of speakers which is 33 and using all repetitions a speaker uttered for 
digits. Since the number of repetitions varies per digit, when concatenating digits in the group equal 
times there were utterances left. These utterances are also concatenated to increase data samples. It 
is clear that the accuracy numbers will be very low if we decrease the number of speakers and keep 
the number of repetitions equally at 4 as it is the largest number of repetitions common for speakers 
per digit. The architecture of x-vectors needs a lot of data to show good results, therefore, when 
decreasing the number of speakers, the amount of repetitions should increase so that the model will 
have enough data samples to learn and perform more than 60%. The results can be seen below in 
Table 7. 
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Table 7: Text-dependency experiments with sequential and phonetic sorting of digits. 

Train set Test Set Accuracy (%) Test set #2 Accuracy #2 (%) 

0-4 0-4 81.82 5-9 59.09 

5-9 5-9 82.61 0-4 56.52 

3-5-9 3-5-9 69.57 0-4-7 52.17 

4-5-9 4-5-9 60.87 0-3-7 56.52 

3-4-9 3-4-9 73.91 0-2-7 56.52 

5-6-9 5-6-9 82.61 3-4-7 43.48 

 
In the table, the first two rows are sequential testing and the last four rows are phonetic testing, in 
the order given previously in Table 6. Observing the differences in the accuracy columns for each 
experiment, one can say that the model can differentiate between texts whether the digits are in 
sequential order or in phonetic grouping. Overall, the models trained with digits in sequential order 
performed better than the phonetic setting defined above. This could be due to the grouping or the 
dataset, in general. Even though the accuracies change for a model in each experiment, identifying 
speakers with the set of unknown words seems to be staying the same around 50%. This can conclude 
that x-vectors indeed have information about the given texts, and perform poorly on unknown words. 
Nevertheless, this dataset is very small to derive such conclusions and some experiments resulted in 
overfitting. The next experiments are conducted with a bigger dataset. 

3.2.2 Experiments on the DAC Datasets. 
The experiments in the previous section introduced us a little bit to the identification and formed an 
idea about its relationship with text. However, the toy datasets above are not enough to draw a 
conclusion. With such small datasets, it is easier for a model to overfit and perform unexpectedly on 
a different set. Hence, a bigger dataset is used to test the hypothesis and conduct more experiments 
to also research the existence of a relationship between speaker identification and duration of 
recordings. 

The bigger dataset used for the purpose of this study is the DAC dataset. The DAC dataset is 
divided into two parts for text dependency experiments. The first part consists of only digit 
utterances, and the second part is only command utterances. In the digit dataset each digit utterance 
on average is 1.74, and its total duration is almost 1 hour and half. The commands are on average 
2.35 seconds long, so the duration of these two sets does not differ much. On the contrary, the 
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commands are a lot more than digits, meaning there are only 9 digits, however, the commands are 
77. Therefore, even though the duration of each utterance of these sets do not differ, at the end, the 
duration of the command dataset is almost 16 hours. 

The results are shown in Table 8. The accuracy of the model trained on the digits dataset is 85.58% 
and the model trained on commands gives 92.16%. This is predictable since commands have more 
data than digits. The cross-testing of these datasets gave similar results with each other. Digits model 
scored 62% on the commands dataset, and commands model scored 58% on the digits dataset. Even 
though we have switched the dataset, the same type of experiments gave again around 50%-60% 
accuracy. Low accuracies show that the models have text dependencies since the drop in accuracy 
is huge. The text-dependency experiments with both Azerbaijani AudioMNIST and DAC datasets 
performed the same and revealed the relationship between the architecture and text used in the 
training. 

Table 8: Accuracy results of experiments with DAC digits versus commands. 

 DAC Digits DAC Commands 

DAC Digits 85.58% 62.42% 

DAC Commands 57.74% 92.16% 

 
The next experiment has been conducted on the subset of the DAC dataset which has all the 
commands and digits, but less number of speakers. 20 speakers out of 29 were chosen since these 
speakers have uttered all 86 texts (77 commands and 9 digits), thus can be grouped together. As 
mentioned earlier, the speakers uttered commands and digits various times. It on average ranges 
from at least 6.8 times to the most is 27.6 times. An average of all speaker average values gives the 
value of 14.7. This means that if we pick any utterance of any speaker, the number of times it was 
repeated by that speaker will be 14.7. Without limiting the repetition times and giving all the dataset 
to train, we get an accuracy of 97.95%. If we are to limit it somehow, so the range of repetitions will 
not be drastically huge, we can set the limit as at most 10 repetitions. Most of the speakers, to be 
precise 75% of the speakers, have uttered a text more than 10 times, on average. The other 25% on 
average repeated below that number. The logic behind this creation of this subset is, if there are more 
than 10 repetitions for an utterance for any speaker, only 10 are kept, if it is low, all are kept. With 
this setting, the accuracy decreased to 87.03. These experiments form an idea that if a system needs 
to be built for text-dependent closed-set speaker identification in the Azerbaijani language, each text 
should be repeated more than 10 times for an accuracy above 90%. The results are depicted in Table 
9. 
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Table 9: Accuracy results of experiments with DACW various repetition times. 

Repetition Times Test Accuracy (%) 

All repetitions 97.95 

At most 10 repetitions 87.03 

 
Another experience has been conducted to test the relationship of models with the duration of 
recordings. For these three datasets have been used which are DACW-2, DACW-3 and DACW-4. 
Three models have been trained using these datasets and cross-tested with them. The results are 
shown in Table 10. 

We can observe the performance of each model closely. For DACW-2, the most accurate result 
is with its own dataset, which can be predicted. When tested on DACW-3 and DACW-4, the result 
was 4% lower. For DACW-3, the most accurate result is with DACW-4 and DACW-3, and it is 
lower for DACW-2 by 3%. DACW-4 has the highest accuracy for its own dataset, then it is lower 
by 4% for DACW-3, and by 5% for DACW-2. 

Table 10: Accuracy results of experiments with DACW-2, DACW-3 and DACW-4. 

 DACW-2 DACW-3 DACW-4 

DACW-2 97.96% 93.07% 93.26% 

DACW-3 96.19% 99.04% 99.47% 

DACW-4 95.28% 96.24% 99.76% 

 
By viewing the table again, we can observe a pattern in diagonals, where each model scored 
relatively good in identifying its own dataset. In addition, we can conclude that if we are trying to 
achieve higher accuracy for a dataset, the longer the recordings are the better. The highest accuracy 
has been shown by DACW-4 with 99.76% accuracy. For cross-tests, however, DACW-3 seems to 
do better than DACW-4. It is 1% more accurate in testing DACW-2 than DACW-4. Also, DACW-
3 performed better on testing DACW-4 than vice-versa. This can conclude that if we are going to 
test our model with different combinations of the same utterances, the best dataset to train our model 
will be the middle or average number of words of our datasets. For example, if we know that our 
model will be trained for two-word commands, as well as, three and four-word commands, we would 
train our model with a three-word dataset since it is near to other two datasets. With the pattern 
exposed in the tests, we can clearly see that the more the dataset goes in one direction of the number 
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of commands, the farthest one loses accuracy. As an example, DACW-4 performs relatively poorly 
on DACW-2, but better for DACW-3. Overall, models trained with the longer durations perform 
better in identifying speakers. 
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4 SUMMARY AND CONCLUSIONS 
In summary, speaker identification is a technology that has been researched for a long time due to 
its useful applications, in investigations and customer service. This field is evolving starting from 
1960, and the latest architecture was introduced in 2018 which utilizes the idea of vectors and 
embeddings. The embedding method called x-vectors is derived from the deep neural network and 
claimed to be very accurate. This technology was used in experiments in this paper. The aim of this 
study was to find out if the architecture of x-vectors has information about the text given in the 
dataset. Since most research tested the architecture in a text-independent setting, creating a text-
dependent model is a new approach in which x-vectors can be used. Thus, its relationship with text, 
how accurately it performs when confronted with unknown text, is to be tested. Additionally, the 
relationship between x-vectors and duration of recordings given as input to the neural network is 
observed. 

For these purposes, three datasets were used to train the models. These are digits datasets such as 
AudioMNIST in English and Azerbaijani, and digits and commands (DAC) dataset in Azerbaijani. 
The latter one is the largest dataset among the three, being in total almost 18 hours. All of these 
datasets were used to test text-dependency, whereas, the DAC dataset was used to test duration 
dependency. Moreover, there is a scarcity in studies of speaker identification in the languages 
belonging to a Turkic group, and even less research papers on this task with the Azerbaijani 
language. Therefore, this research will hopefully benefit the local community and contribute to new 
studies. 

The experiments in this study showed quite interesting results. First of all, all experiments with 
data sets regarding text-dependency showed that it exists. When training a model to identify speakers 
with a defined set of digits and testing with digits unseen to model be it in English or in Azerbaijani 
AudioMNIST datasets, the model performed very poorly. Even though speakers were identified with 
an accuracy higher than 80% with digits defined in the training set, with unseen digits it is around 
50%. Conducting the experiment with the larger DAC dataset gave the same results. When the model 
is trained with commands, with unseen and the same text commands, it gave 92.16% accuracy, 
however, with unseen and different text digits it resulted in 57.74%. The same pattern was observed 
when conducting the experiment vise-versa. When the model is trained with digits, with unseen and 
the same text digits, the result was 85.58% accuracy, however, with unseen and different text 
commands the outcome was 62.42%. In summary, x-vectors architecture showed a text-dependency 
characteristic in experiments with the English and Azerbaijani dataset varying from 1 hour to 18 
hours, even though the texts of the inputted data were not defined. 

For testing duration-dependence of x-vectors, commands of various lengths, such as 2, 3 and 4, 
were utilized, which are generated subsets of the DAC dataset. The outcome of the experiment shows 
that the longer the duration, the better the model learns and identifies a speaker. The subset with 
longer duration showed better results also in cross-testing, where the model trained with the 
utterances consisting of 4 words tested with utterances consisting of 2 or 3 words. 
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An additional experiment with DAC dataset concluded that for achieving an accuracy in text-
dependent speaker identification higher than 95%, each text should be repeated at least 10 times and 
more than that for higher results. 

To conclude, x-vectors architecture for speaker identification is a text-dependent architecture 
which shows better results with the known texts and poor results with unseen text when recognizing 
speakers. The difference in accuracy values between test cases of known and unknown texts can be 
from 20% to 40%. It also performs slightly better with longer utterances than with shorter ones. 
Furthermore, since deep learning requires a lot more data than any other architecture, this study 
defined that the number of repetitions for texts in text-dependent speaker identification using x-
vectors should be 10 and more to achieve accuracies higher than 95%. 

The future work of this study will be experimenting with various length of utterances starting 
from 1 command to 6 commands to further ensure the observed pattern. Moreover, the architectures 
of x-vectors and i-vectors can both be tested on a small dataset and a larger dataset with a potential 
gradual increase in sizes, to see the performance and determine which architecture performs better 
on which size of data. The next studies will also be focused on open-set speaker identification, where 
unknown speakers who are not in the database of the training set will be correctly identified as 
unknown. 
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