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ABSTRACT
Automatic Speech Recognition (ASR) technology is essential in a variety of applications, such

as voice search, virtual assistants, transcription services, and subtitling for people with hearing
impairments. Despite its numerous applications, developing ASR systems for low-resource languages
like Azerbaijani presents significant challenges due to the scarcity of available data, linguistic
variations, and the unique phonetic properties of the language. This thesis specifically addresses
the development of an ASR system for recognizing numeric data in Azerbaijani, a Turkic language
spoken by approximately 50 million people worldwide. Numeric data recognition has critical
practical applications in industries such as finance and transportation, where accurate and reliable
recognition of numbers is essential.

One of the primary challenges in developing an ASR system for numeric data is the inherent
lack of context available to help disambiguate similar-sounding numbers. Unlike general speech
recognition, numeric data often appears in isolation or with limited accompanying information,
making it more difficult to accurately recognize spoken numbers. This challenge is further
exacerbated in low-resource languages like Azerbaijani.

The objective of this master’s thesis is to develop an ASR system for numeric data in Azerbaijani
by exploring various techniques and methodologies. We investigate the phonetic and linguistic
properties of Azerbaijani relevant to numeric data recognition and analyze the existing resources
for developing an ASR system. The study proposes a framework for ASR system development,
experimenting with different feature extraction and modeling techniques, and evaluating the
performance of the system using appropriate metrics.

In this research, we developed an ASR system for the Azerbaijani language using the Kaldi toolkit.
The ASR model was trained using the classic Hidden Markov Model - Gaussian Mixture Model
(HMM-GMM) architecture, employing both monophone and triphone models along with various
feature extraction techniques such as Mel-Frequency Cepstral Coefficients (MFCC), Linear Predictive
Coding (LPC), and Cepstral Mean and Variance Normalization (CMVN). The experimental results
showed that the triphone models generally outperformed monophone models, and the combination of
MFCC, LPC, and CMVN features provided the best performance among the tested feature extraction
techniques. While performance varied across different datasets, our ASR system demonstrated
promising potential for further improvements and adaptation to specific challenges presented by each
dataset.

This thesis contributes to the development of ASR technology for low-resource languages,
specifically Azerbaijani, in the domain of numeric data recognition. The results of this research have
practical implications for industries that rely on accurate and reliable recognition of numeric data,
such as financial services and transportation. As the dataset and ASR system improve, we anticipate
that the impact on various applications, including voice assistants, transcription services, and speech
analytics in Azerbaijani, will be significant. This study lays the foundation for further research and
development of ASR systems for the Azerbaijani language, paving the way for improved and more
robust ASR solutions.
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LIST OF KEYWORDS
• ASR: Automatic Speech Recognition, the process of transcribing spoken language into text

using computer algorithms.

• N-gram: A sequence of N items, typically words or letters, used in language modeling for
statistical language modeling.

• Language Modeling: The task of estimating the probability distribution of sequences of words
or other linguistic units in a language.

• Kaldi: A popular open-source toolkit for speech recognition, capable of performing speech
recognition, speaker diarization, and other related tasks.

• SRILM: The SRI Language Modeling Toolkit, a suite of tools for building and evaluating
statistical language models.

• GMM: Gaussian Mixture Model, a probabilistic model used to represent the distribution of a
set of continuous variables as a mixture of Gaussian distributions.

• HMM: Hidden Markov Model, a statistical model used to describe sequences of observable
events in terms of underlying unobservable states.

• Phoneme: The smallest unit of sound in a language, used as the building blocks for constructing
words.

• Acoustic Model: The component of an ASR system responsible for converting audio input into
a sequence of phonemes or other linguistic units.

• Language Model Smoothing: The process of adjusting the probability distribution of a language
model to account for rare or unseen events in the training data.

• Beam Search: An algorithm used to search for the most likely sequence of words given a
language model and acoustic model, by considering only the most likely candidate sequences
at each step.

• Word Error Rate (WER): A common metric used to evaluate the performance of an ASR system,
defined as the percentage of words in the output that differ from the correct transcription.

• Perplexity: A measure of how well a language model predicts a given sequence of words,
calculated as the inverse probability of the test set normalized by the number of words.
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1 Introduction
Automatic Speech Recognition (ASR) systems have been an active area of research for many years,
with substantial progress made in recent times due to advancements in machine learning and deep
learning techniques. ASR systems have found numerous applications in fields such as transcription
services, voice assistants, and customer support systems. However, the development of ASR systems
for less-studied languages, such as Azerbaijani, remains limited. This study focuses on developing
a robust ASR system for numeric data in the Azerbaijani language, which can have significant
implications for various applications in both public and private sectors.

1.1 Definition of the Problem
The problem addressed in this study is the development of an ASR system capable of accurately
recognizing and transcribing numeric data in the Azerbaijani language. Numeric data can be found
in various contexts, such as phone numbers, bank account numbers, dates, and monetary amounts.
Developing an ASR system that can accurately recognize and transcribe such data can be challenging
due to factors such as speaker variability, background noise, and the complexity of the Azerbaijani
language.

1.2 Objective of the Study
The primary objective of this study is to design, develop, and evaluate an ASR system for numeric
data in the Azerbaijani language. This includes:

1. Collecting and curating a comprehensive dataset of numeric data in Azerbaijani.

2. Developing appropriate feature extraction methods for the ASR system.

3. Evaluating various acoustic and language models to determine the optimal configuration for the
ASR system.

4. Assessing the performance of the developed ASR system on a diverse set of test data.

5. Identifying areas for future work and improvement in the ASR system.

1.3 Significance of the Problem
The development of an ASR system for numeric data in the Azerbaijani language is significant for
several reasons:

1. It addresses the gap in research and applications related to ASR for less-studied languages like
Azerbaijani.

2. An accurate and robust ASR system for numeric data can be utilized in various applications,
such as voice-based customer service systems, banking, telecommunication, and transportation
services.

3. The insights gained from this research can contribute to the broader understanding of ASR
system development for other under-researched languages and domains.
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1.4 Assumptions and Limitations
The study assumes that the carefully curated dataset is representative of real-world audio samples
containing numeric data in Azerbaijani. The study also assumes that the performance of the ASR
system accurately reflects its ability to transcribe numeric data in Azerbaijani.

One significant limitation of this study is that it only focuses on numeric data and does not address
the recognition of other types of speech. Another limitation is that the study only uses a limited
number of n-gram language models and evaluation metrics, which may not fully capture the ASR
system’s performance. Finally, the study’s findings may not be generalizable to other less commonly
spoken languages.

2 Literature Review and Related Work

Input
Speech

Feature
Extraction

Acoustic
Model

Language
ModelDecoderResult

Figure 1: Automatic Speech Recognition System Diagram. The ASR system consists of several
interconnected components. The Input Speech is first processed by the Feature Extraction module, which

extracts relevant acoustic features. These features are then passed to the Acoustic Model to generate a
probability distribution over phonetic units. The Language Model provides a probability distribution over

word sequences, which is combined with the output from the Acoustic Model. The Decoder utilizes both the
Acoustic Model and Language Model probabilities to generate the most likely sequence of words. Finally, the

Result is the recognized text produced by the system.

An Automatic Speech Recognition (ASR) system is designed to convert spoken language into
written text by analyzing and decoding the acoustic features of speech signals. The general
architecture of an ASR system can be broadly divided into four components: Feature Extraction,
Acoustic Model, Language Model, and Decoder. Here, we provide an overview of these components:

1. Feature Extraction: The feature extraction component is responsible for converting the raw
speech waveform into a compact and meaningful representation that captures the relevant
information in the signal. The primary goal is to extract features that are invariant to irrelevant
factors (e.g., speaker, channel, and environment) and sensitive to the linguistic content of
the speech. Commonly used feature extraction techniques include Mel-Frequency Cepstral
Coefficients (MFCC), Linear Predictive Coding (LPC), and Perceptual Linear Prediction (PLP).
These features are typically computed on short-time frames (20-30 ms) of the speech signal with
some overlap between consecutive frames.

2. Acoustic Model: The acoustic model component aims to capture the relationship between the
acoustic features of speech signals and the corresponding linguistic units, such as phonemes
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or graphemes. It provides a probabilistic model of how the speech features are generated
by the linguistic units, which is then used by the decoder to find the most likely word
sequence. Acoustic models can be based on various techniques, including Hidden Markov
Models (HMMs), Gaussian Mixture Models (GMMs), and Deep Neural Networks (DNNs).
The acoustic model is trained on a large dataset of labeled speech data, where the speech signals
are paired with the corresponding transcriptions.

3. Language Model: The language model component captures the syntactic, semantic, and
pragmatic regularities of the target language. It provides a probability distribution over
sequences of words or subword units, which is used by the decoder to constrain and guide
the search for the most likely word sequence. Language models can be based on various
techniques, such as n-gram models, which estimate the probability of a word given its n-
1 preceding words, or more recent approaches like neural network-based models, including
Recurrent Neural Networks (RNNs), Transformers, and GPT-based models. The language
model is trained on a large dataset of text data, which may be domain-specific or general.

4. Decoder: The decoder component is responsible for finding the most likely word sequence
given the observed acoustic features and the underlying acoustic and language models. It
searches through the vast space of possible word sequences to identify the sequence with
the highest probability or score. Decoding algorithms employed in ASR systems include the
Viterbi algorithm, beam search, A* search, stack decoding, and lattice generation and rescoring.
The choice of the decoding algorithm depends on the trade-off between search efficiency and
recognition accuracy.

In summary, an ASR system comprises four main components: Feature Extraction, Acoustic Model,
Language Model, and Decoder. These components work together to convert the raw speech waveform
into a written transcription by analyzing the acoustic features, leveraging the knowledge of the target
language, and efficiently searching through the space of possible word sequences.

y[n] = x[n]− αx[n− 1] (1)

Framing and Windowing: The input signal is divided into overlapping frames, and a window function
is applied to each frame.

w[n] = 0.54− 0.46 cos

(
2πn

N − 1

)
(2)

LPC Coefficients Estimation: The LPC coefficients are computed by minimizing the mean square
prediction error. The autocorrelation method is commonly used for this purpose. The autocorrelation
of the windowed signal is given by:

R[k] =
N−1∑
n=k

xw[n]xw[n− k] (3)

The LPC coefficients can be estimated by solving the following linear system known as the Yule-
Walker equations:

p∑
k=1

akR[m− k] = R[m], ;m = 1, 2, ..., p (4)
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Where ak are the LPC coefficients, R[m] is the autocorrelation function, and p is the order of the
LPC model.

Spectral Envelope Estimation: The estimated LPC coefficients can be used to form the LPC filter,
which models the spectral envelope of the speech signal. The transfer function of the LPC filter is
given by:

H(z) =
1

A(z)
=

1

1−
∑p

k=1 akz
−k

(5)

Where A(z) is the LPC filter polynomial, and H(z) is the LPC filter transfer function.

LPC Cepstral Coefficients: To obtain a compact and efficient representation of the spectral envelope,
the LPC coefficients can be transformed into cepstral coefficients using the following recursive
relation:

ci = ai +
∑i−1

k=1
i−k
i
ckai−k, 1 ≤ i ≤ p (6)

Where ci are the LPC cepstral coefficients, and ai are the LPC coefficients.
LPC-based features have been extensively used in speech coding (Schroeder & Atal, 1985), speech
synthesis (Klatt, 1980), and speech recognition (Rabiner & Juang, 1993).

2.0.1 PLP

Pre-emphasis
Framing

& Windowing
Power

Spectrum
Critical-band
Integration

Equal-
loudness

Pre-emphasis

Intensity-to-
Loudness

Compression

Autoregressive
Modeling

Cepstral
Coefficients

Figure 2: PLP Feature Extraction Process
The diagram illustrates the steps involved in extracting PLP features from a speech signal. The process starts
with pre-emphasis, followed by framing and windowing the signal. The power spectrum is computed, and the

signal undergoes critical-band integration based on the Bark scale. An equal-loudness pre-emphasis is
applied, followed by intensity-to-loudness compression. Autoregressive modeling is performed to fit an

all-pole model to the loudness spectrum, and the resulting PLP coefficients are transformed into cepstral
coefficients.

Perceptual Linear Prediction (PLP) is a feature extraction technique that is based on the human
auditory system and aims to mimic the human perception of sound (Hermansky, 1990). PLP features
have been widely used in various speech and audio processing tasks, including speech recognition,
speaker identification, and audio classification.
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1. Pre-emphasis: Similar to MFCC and LPC, the pre-emphasis step is applied to enhance the
high-frequency components and balance the frequency spectrum.

y[n] = x[n]− αx[n− 1] (7)

2. Framing and Windowing: The input signal is divided into overlapping frames, and a window
function is applied to each frame.

w[n] = 0.54− 0.46 cos

(
2πn

N − 1

)
(8)

3. Power Spectrum: The power spectrum of the windowed frame is computed using the Discrete
Fourier Transform (DFT).

X[k] =
N−1∑
n=0

x[n]w[n]e−j 2πkn
N (9)

P [k] =
1

N
|X[k]|2 (10)

4. Critical-band Integration: The power spectrum is integrated into critical bands, which are based
on the Bark scale that approximates the frequency resolution of the human auditory system.
The Bark scale is given by:

z(f) = 13 arctan(0.00076f) + 3.5 arctan

(
f 2

75002

)
(11)

Where z(f) is the Bark scale value corresponding to frequency f .

5. Equal-loudness Pre-emphasis: The power in each critical band is pre-emphasized to account
for the non-uniform sensitivity of human hearing to different frequencies. The equal-loudness
contour is approximated by:

L(z) = −(200− z)δ (12)

Where L(z) is the equal-loudness pre-emphasis, and δ is a parameter typically set to 0.35.

6. Intensity-to-loudness Compression: The pre-emphasized critical-band power is transformed
into loudness perception by applying a power-law compression.

Ψ(z) =

(
P (z)

P0

)ϵ

(13)

Where Ψ(z) is the loudness perception, P (z) is the pre-emphasized critical-band power, P0 is
a reference power, and ϵ is a parameter typically set to 0.33.

7. Autoregressive Modeling: An all-pole model is fitted to the loudness spectrum using linear
prediction, similar to the LPC method. The coefficients of the all-pole model are the PLP
coefficients.
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8. Cepstral Coefficients: The PLP coefficients can be transformed into cepstral coefficients, often
referred to as PLP cepstral coefficients, using a technique similar to the one used in LPC cepstral
analysis.

PLP features have been shown to be robust and effective in various speech and audio processing
applications, as they capture the perceptual characteristics of the human auditory system (Hermansky
& Morgan, 1994).

2.0.2 CMVN

Cepstral Mean and Variance Normalization (CMVN) is a widely used technique in speech and
audio processing to reduce the effects of channel and environment variations, as well as speaker
variability, in the extracted features. It is commonly applied to cepstral features such as MFCC, LPC
cepstral coefficients, and PLP cepstral coefficients (Viikki & Laurila, 1998).

The primary goal of CMVN is to normalize the mean and variance of the cepstral coefficients
across a given utterance or a set of utterances, making the features more robust against channel and
environment variations. The process involves two main steps: mean normalization and variance
normalization.

1. Mean normalization: The mean normalization is performed by subtracting the mean of the
cepstral coefficients computed over the entire utterance or set of utterances.

c̄i = ci − µi (14)

Where c̄i is the mean-normalized cepstral coefficient, ci is the original cepstral coefficient, and
µi is the mean of the ith cepstral coefficient computed over the utterance or set of utterances.

2. Variance normalization: The variance normalization is performed by dividing the mean-
normalized cepstral coefficients by the standard deviation of the coefficients computed over
the entire utterance or set of utterances.

ĉi =
c̄i
σi

(15)

Where ĉi is the variance-normalized cepstral coefficient, c̄i is the mean-normalized cepstral
coefficient, and σi is the standard deviation of the ith cepstral coefficient computed over the
utterance or set of utterances.

CMVN has been widely adopted in speech and audio processing tasks, such as speech recognition
(Viikki & Laurila, 1998), speaker identification (Furui, 1981), and audio classification (Tzanetakis &
Cook, 2002), as it improves the performance of these systems by reducing the effects of channel and
environment variations.

2.1 Acoustic Model

Speech recognition is a challenging task that involves converting the continuous acoustic
waveform of a spoken utterance into a sequence of symbolic representations, such as phonemes
or words. To accomplish this task, speech recognition systems use an acoustic model, which is

6



Figure 3: Spectrograms of an audio signal with MFCC and PLP features. Both spectrograms are computed
with a window size of 40 ms and a step size of 20 ms. MFCC features are calculated with 12 coefficients,

while PLP features are calculated with 8 coefficients and RASTA processing.
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State 1 State 2 State 3

GMM 1 GMM 2 GMM 3

a11

a12

a22

a23

a33

Figure 4: Schematic Diagram of the HMM-GMM Architecture. This figure depicts the structure of an
HMM-GMM system, showing the Hidden Markov Model (HMM) states, state transition probabilities aij , and
the associated Gaussian Mixture Models (GMMs) for each state. The HMM models the temporal dynamics of

speech signals, while the GMM models the probability distributions of the feature vectors given the HMM
states.

responsible for modeling the relationship between the acoustic features of the speech signal and the
corresponding symbolic units.

The acoustic model is typically implemented as a statistical model, which is trained on a
large corpus of labeled speech data. The model parameters are estimated using machine learning
algorithms, such as hidden Markov models (HMMs) or deep neural networks (DNNs), which learn
the statistical dependencies between the input features and the output symbols.

HMMs are a well-established approach to acoustic modeling, which have been used successfully
in speech recognition systems for many years. HMM-based acoustic models represent the acoustic
features of the speech signal as a sequence of probability distributions over the possible output
symbols, such as phonemes or words. During decoding, the Viterbi algorithm is used to find the
most likely sequence of output symbols given the observed acoustic features.

DNNs are a relatively new approach to acoustic modeling, which have shown significant
improvements in speech recognition performance over the past decade. DNN-based acoustic models
represent the acoustic features of the speech signal as a high-dimensional vector, which is mapped to
a sequence of output symbols using a deep neural network. During decoding, the forward-backward
algorithm or variants thereof are used to compute the posterior probabilities of the output symbols
given the observed acoustic features.

Both HMMs and DNNs have their strengths and weaknesses, and are suited to different types of
speech recognition tasks. HMMs are particularly effective for modeling speech signals with limited
training data, and are less sensitive to noise and speaker variability than DNNs. DNNs, on the other
hand, are more effective at modeling complex, high-dimensional acoustic features, and have been
shown to outperform HMMs on large-scale speech recognition tasks.

In summary, the choice of acoustic modeling approach depends on the specific requirements of
the speech recognition task, as well as the availability and quality of the training data.

2.1.1 HMM-GMM
The Hidden Markov Model-Gaussian Mixture Model (HMM-GMM) architecture is a widely used
approach in speech and audio processing tasks, such as speech recognition, speaker identification,
and audio classification. The HMM-GMM architecture combines the strengths of Hidden Markov
Models (HMMs) for modeling the temporal dynamics of speech signals and Gaussian Mixture Models

8



(GMMs) for modeling the probability distributions of the feature vectors (Rabiner & Juang, 1993).
Hidden Markov Models (HMMs): HMMs are a class of statistical models that represent a system

with a finite number of hidden states, each of which is associated with an observable output probability
distribution. HMMs are particularly suitable for modeling time-varying processes, such as speech
signals, due to their ability to capture the underlying temporal structure. An HMM is characterized by
the following components (Rabiner, 1989): State transition probabilities: aij = P (qt = j|qt−1 = i),
where qt is the state at time t. Output probabilities: bj(ot) = P (ot|qt = j), where ot is the observed
feature vector at time t. Initial state probabilities: πi = P (q1 = i). Gaussian Mixture Models
(GMMs): GMMs are a class of parametric probability density functions that represent a mixture of
several Gaussian distributions. GMMs are used to model the output probabilities of the HMM states.
Each state in the HMM is associated with a GMM, which models the probability distribution of the
feature vectors given the state. A GMM is defined by the following parameters (Reynolds & Rose,
1995): Mixture weights: wk, where k = 1, 2, ..., K, and K is the number of Gaussian components
in the mixture. Gaussian component means: µk. Gaussian component covariances: Σk. The output
probability of a feature vector ot given an HMM state j is computed as:

bj(ot) =
∑

k = 1KwkN (ot;µk,Σk) (16)

Where N (ot;µk,Σk) is the Gaussian probability density function with mean µk and covariance
matrix Σk.

In the HMM-GMM architecture, the HMMs are used to model the temporal dynamics of speech
signals, while the GMMs are used to model the probability distributions of the feature vectors given
the HMM states. The HMM-GMM system is trained using a two-step process: HMM parameter
initialization and iterative parameter estimation using the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977).

The HMM-GMM architecture has been widely adopted in speech and audio processing tasks due
to its effectiveness in modeling the complex and time-varying nature of speech signals. However,
with the advent of deep learning techniques, more recent approaches such as Deep Neural Networks-
HMM (DNN-HMM) and Long Short-Term Memory (LSTM)-HMM hybrid systems have shown
superior performance in various tasks, including speech recognition, speaker identification, and audio
classification (Hinton et al., 2012; Graves et al., 2013).

Despite the shift towards deep learning techniques, the HMM-GMM architecture remains an
important foundation and continues to be used as a benchmark for comparison. It also serves as a
basis for understanding more advanced hybrid models that incorporate deep learning components.

Some of the more recent architectures that build on the HMM-GMM framework are:

1. Deep Neural Network-HMM (DNN-HMM): In the DNN-HMM architecture, a deep neural
network is used to model the output probabilities of the HMM states instead of GMMs (Hinton
et al., 2012). The DNN is trained to predict the HMM state given the input features, providing
a more powerful and discriminative model of the output probabilities.

2. Long Short-Term Memory (LSTM)-HMM: LSTMs are a type of recurrent neural network
(RNN) specifically designed to model long-range temporal dependencies in sequences
(Hochreiter & Schmidhuber, 1997). In an LSTM-HMM hybrid system, the LSTM is used
to model the output probabilities of the HMM states, providing a better representation of the
temporal structure in the speech signal (Graves et al., 2013).
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3. Convolutional Neural Network-HMM (CNN-HMM): CNNs are a type of neural network
specifically designed for processing grid-like data, such as images or spectrograms (LeCun et
al., 1998). In a CNN-HMM hybrid system, the CNN is used to model the output probabilities
of the HMM states, taking advantage of the spatial structure in the input features (Sainath et al.,
2015).

These more recent architectures have demonstrated superior performance compared to the traditional
HMM-GMM systems, thanks to their ability to capture more complex and discriminative patterns in
the input features and better model the temporal structure of speech signals.

In the context of HMM-GMM-based speech recognition systems, the modeling of speech units
plays a crucial role in the system’s performance. Two commonly used approaches for modeling
speech units are monophone and triphone modeling, which differ in their complexity and the way
they capture context-dependent variations in speech.

Monophone Training Monophone models represent the most basic units of speech, known as
phonemes, without taking into account any context. Each phoneme is modeled as an HMM with a
fixed number of states, and each state is associated with a GMM to model the probability distribution
of the feature vectors. During monophone training, the HMM-GMM parameters are estimated using
a set of training data that is annotated with phoneme labels (Rabiner & Juang, 1993).

The primary advantage of monophone modeling is its simplicity, which results in a lower
computational complexity and fewer training data requirements. However, monophone models do not
account for the coarticulation effects that occur when different phonemes are pronounced in various
contexts. As a result, monophone-based systems tend to have limited performance, especially when
dealing with continuous, natural speech.

Triphone Training Triphone models address the limitations of monophone models by taking
into account the context-dependent variations in speech. A triphone is a phoneme conditioned on
the preceding and following phonemes, which captures the coarticulation effects and the resulting
variations in the pronunciation of a given phoneme (Woodland et al., 1994).

In triphone training, each triphone is modeled as an HMM with a fixed number of states, and each
state is associated with a GMM to model the probability distribution of the feature vectors. The HMM-
GMM parameters are estimated using a set of training data that is annotated with phoneme labels and
their context. Due to the large number of possible triphone combinations, decision tree-based state
clustering techniques are often used to share the HMM-GMM parameters among similar triphones,
reducing the number of parameters that need to be estimated and alleviating the data sparsity problem
(Young et al., 1994).

Triphone-based systems offer improved performance compared to monophone-based systems, as
they capture context-dependent variations in speech more effectively. However, triphone modeling
comes with increased complexity and requires more training data to estimate the HMM-GMM
parameters reliably.

In summary, monophone and triphone modeling represent two different approaches to modeling
speech units in HMM-GMM-based speech recognition systems. While monophone models offer
simplicity and lower computational complexity, triphone models provide better performance by
accounting for context-dependent variations in speech.
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A B C

A-B-C B-C-D C-D-E

Figure 5: Illustration of Monophone and Triphone Modeling. This figure demonstrates the difference
between monophone and triphone models. Monophone models represent phonemes without context (e.g., A,
B, C), while triphone models represent phonemes with context, conditioned on the preceding and following

phonemes (e.g., A-B-C, B-C-D, C-D-E).

Context A-B?

Context B-C? Context C-D?

A-B-C, B-C-D C-D-E, D-E-F E-F-G, F-G-H G-H-I, H-I-J

Yes No

Yes No Yes No

Figure 6: Decision Tree-Based State Clustering Example. This figure illustrates an example of decision
tree-based state clustering used in triphone training. The decision tree is used to share the HMM-GMM
parameters among similar triphones, reducing the number of parameters that need to be estimated. Each
internal node of the tree represents a question about the phonetic context, while the leaf nodes represent

clusters of similar triphones (e.g., A-B-C, B-C-D).
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2.1.2 DNN-HMM

Deep Neural Network-Hidden Markov Model (DNN-HMM) is a hybrid architecture that combines
the strengths of Deep Neural Networks (DNNs) and Hidden Markov Models (HMMs) for acoustic
modeling in ASR systems. DNN-HMM has become a popular choice in recent years due to its
ability to model complex patterns and capture higher-level features in the speech signal, resulting
in improved recognition performance compared to the traditional Gaussian Mixture Model-Hidden
Markov Model (GMM-HMM) systems.

The DNN-HMM hybrid architecture combines the strengths of DNNs and HMMs for acoustic
modeling. In this architecture, the DNN is used to estimate the posterior probabilities of the HMM
states given the acoustic observations. These posterior probabilities are then used as the observation
likelihoods in the HMM framework.

Given an acoustic observation ot at time t, the DNN computes the posterior probability of each
HMM state s as follows:

P (s|ot) =
P (ot|s)P (s)

P (ot)
(17)

where P (ot|s) is the likelihood of observing ot given state s, P (s) is the prior probability of state
s, and P (ot) is the probability of observing ot. Since P (ot) is constant for all states, we can ignore it
for the purpose of maximizing the posterior probabilities.

The output layer of the DNN has as many nodes as the number of HMM states in the system. Each
node in the output layer computes the posterior probability of the corresponding HMM state given
the input observation using a softmax activation function:

P (si|ot) =
ezi∑N
j=1 e

zj
(18)

where zi is the output of the i-th node before applying the softmax function, and N is the number
of HMM states.

In the training phase, the DNN is trained to minimize the cross-entropy loss between the predicted
posterior probabilities and the true state alignments obtained from a GMM-HMM system or a forced
alignment procedure. The cross-entropy loss is defined as:

L = −
T∑
t=1

N∑
i=1

qti logP (si|ot) (19)

where T is the number of time steps in the input sequence, qti is the true state alignment,
and P (si|ot) is the predicted posterior probability of state i at time t. The DNN is trained using
backpropagation and gradient descent optimization algorithms.

In the decoding phase, the DNN-HMM system searches for the most likely state sequence and the
corresponding word sequence given the input acoustic observations. This is typically achieved using
the Viterbi algorithm or other search algorithms such as token-passing, A*, or beam search. The
DNN provides the observation likelihoods P (s|ot), which are then combined with the state transition
probabilities aij and language model probabilities to find the most likely word sequence.

In conclusion, the DNN-HMM hybrid architecture leverages the power of deep neural networks
to model complex patterns in speech signals and the flexibility of hidden Markov models to represent
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2.1.3 Evaluation metrics for Acoustic Models
Acoustic models are a fundamental component of speech recognition systems, aiming to capture

the relationship between the acoustic features of speech signals and the corresponding linguistic units,
such as phonemes or graphemes. Several evaluation metrics are used to assess the performance of
acoustic models, including:

Phone Error Rate (PER): Phone error rate measures the number of edit operations (insertions,
deletions, or substitutions) required to align the predicted phone sequence with the true phone
sequence, normalized by the total number of phones in the true sequence. Lower PER values indicate
better performance. Frame Error Rate (FER): Frame error rate quantifies the percentage of frames in
which the acoustic model makes an incorrect prediction. In other words, it compares the predicted
and true phonemes at each frame of the speech signal and calculates the proportion of mismatches.
Lower FER values indicate better performance. Accuracy: Accuracy is the proportion of correctly
predicted phonemes or graphemes relative to the total number of predictions. Higher accuracy values
indicate better performance. Confusion Matrix: A confusion matrix provides a detailed view of
the performance of an acoustic model by comparing the predicted phonemes or graphemes with
the true labels. Each row of the matrix corresponds to the true label, and each column represents
the predicted label. The confusion matrix can be used to identify specific classes (e.g., phonemes)
that are commonly misclassified by the acoustic model, providing insights into potential areas for
improvement. Log-Likelihood: Log-likelihood is the logarithm of the probability of the observed
acoustic features given the acoustic model. Higher log-likelihood values indicate better performance,
as they imply that the model assigns higher probabilities to the observed acoustic features. Word Error
Rate (WER): Although word error rate is primarily used for evaluating the overall performance of a
speech recognition system, it can also be used to assess the impact of improvements in the acoustic
model on the system’s performance. Lower WER values indicate better performance. It is crucial to
consider the specific application and task when choosing an evaluation metric for an acoustic model,
as some metrics may be more informative or relevant than others depending on the context.
2.2 Lanugage Models

The field of Natural Language Processing (NLP) has witnessed significant advancements with
the development of Language Models (LMs). LMs are probabilistic models that aim to predict the
next word or sequence of words in a given context, capturing the structure, syntax, and semantics
of a language. They play a crucial role in various NLP tasks, such as speech recognition, machine
translation, and text generation (Goodfellow et al., 2016).

A language model can be formally defined as estimating the probability distribution of a sequence
of words w1, w2, . . . , wT :

P (w1, w2, . . . , wT ) = P (w1) · P (w2|w1) · P (w3|w1, w2) · · ·P (wT |w1, . . . , wT−1) (20)

Various approaches have been proposed to model the probability distribution P (wt|w1, . . . , wt−1)
in LMs. In the following, we provide a brief overview of some of the most popular language modeling
techniques.

2.2.1 N-gram Models

N-gram models are a class of LMs that leverage the Markov assumption, approximating the
probability distribution by considering only the (N − 1) most recent words as context (Jurafsky &
Martin, 2009). An N-gram model can be represented as:
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P (wt|w1, . . . , wt−1) ≈ P (wt|wt−N+1, . . . , wt−1) (21)

N-gram models are simple, computationally efficient, and easy to train, but they suffer from data
sparsity issues and are limited in their ability to capture long-range dependencies.

2.2.2 Neural Language Models

Neural Language Models (NLMs) leverage neural networks to model the probability distribution
P (wt|w1, . . . , wt−1). Different neural network architectures have been proposed for this purpose,
including Feed-Forward Neural Networks (Bengio et al., 2003), Recurrent Neural Networks (Mikolov
et al., 2010), and more recently, Transformer-based architectures (Vaswani et al., 2017).

NLMs have shown superior performance compared to traditional N-gram models, as they
can capture longer-range dependencies and alleviate data sparsity issues through distributed
representations of words.

2.2.3 Smoothing techniques for Language models

Smoothing techniques play a crucial role in language modeling, especially for n-gram models. Due
to the vast number of possible word combinations, many n-grams may not be present in the training
data, leading to zero probability estimates for these unseen n-grams. Smoothing techniques address
this issue by redistributing probability mass from observed n-grams to unseen n-grams, providing
more accurate and reliable probability estimates. Some popular smoothing techniques for language
models are:

Additive Smoothing (Laplace Smoothing): Additive smoothing is a simple technique in which a
small constant is added to the count of each n-gram, typically a value between 0 and 1 (e.g., 1 for
Laplace smoothing). The probability estimates are then computed as:

P (wt|wt−1) =
C(wt−1, wt) + k

C(wt−1) + kV
(22)

Where C(wt−1, wt) is the count of the bigram (wt−1, wt), C(wt−1) is the count of the unigram
wt−1, k is the smoothing constant, and V is the vocabulary size.

Good-Turing Smoothing: Good-Turing smoothing is a technique that estimates the probability of
unseen n-grams based on the observed frequency of n-grams with similar counts. The adjusted count
C∗ is calculated as:

C∗ =
(C + 1)NC+1

NC

(23)

Where C is the original count, NC is the number of n-grams with count C, and NC+1 is the number
of n-grams with count C +1. The probability estimates are then computed using the adjusted counts.

Kneser-Ney Smoothing: Kneser-Ney smoothing is a widely-used technique that incorporates both
absolute discounting and a sophisticated method for estimating the probability of unseen n-grams.
The probability estimates are calculated as:

P (wt|wt−1) =
max(C(wt−1, wt)− d, 0)

C(wt−1)
+ λ(wt−1)PKN(wt) (24)

Where C(wt−1, wt) is the count of the bigram (wt−1, wt), C(wt−1) is the count of the unigram
wt−1, d is the discounting factor, λ(wt−1) is a normalization constant, and PKN(wt) is the Kneser-
Ney estimate of the unigram probability.
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Backoff and Interpolation: Both backoff and interpolation techniques combine the probability
estimates of n-grams of different orders, such as unigrams, bigrams, and trigrams. In backoff,
lower-order n-grams are used only when higher-order n-grams are not observed in the training data.
In interpolation, the probability estimates of different n-gram orders are combined using weights
that sum to 1. These smoothing techniques help improve the performance of language models
by providing more accurate and reliable probability estimates for unseen n-grams. While some
techniques, such as Kneser-Ney smoothing, have been shown to be more effective in certain scenarios,
the choice of the best smoothing technique depends on the specific problem and data at hand.

It is important to note that neural language models, which have gained popularity in recent
years, inherently address the data sparsity issue through the use of distributed representations (word
embeddings) and continuous-valued parameters. These models can capture long-range dependencies
and generalize better to unseen word combinations, reducing the need for explicit smoothing
techniques.

Nevertheless, understanding and applying smoothing techniques remains essential for tasks where
traditional n-gram models are still employed, or when computational resources are limited and more
complex models are infeasible.

In summary, smoothing techniques are an important aspect of language modeling, particularly for
n-gram models. By redistributing probability mass from observed to unseen n-grams, these techniques
enable more accurate and reliable probability estimates, improving the overall performance of the
language models.

2.2.4 Evaluation Metrics for Language Models

Evaluation metrics are essential for assessing the performance of language models and comparing
different modeling approaches. These metrics quantify the quality of the generated probabilities
or predictions and provide insights into the strengths and weaknesses of a language model. Some
commonly used evaluation metrics for language models are:

Perplexity: Perplexity is a widely-used evaluation metric that measures the average uncertainty of
a language model in predicting the next word in a sequence. A lower perplexity score indicates a better
model, as it implies that the model is less ”surprised” by the test data. Mathematically, perplexity for
a given test set of word sequences w1, w2, . . . , wT is defined as:

Perplexity = exp

(
− 1

T

T∑
t=1

logP (wt|w1, . . . , wt−1)

)
(25)

Where P (wt|w1, . . . , wt−1) is the predicted probability of word wt given its context.
Cross-Entropy: Cross-entropy is a measure of the dissimilarity between the true probability

distribution of a sequence of words and the predicted probability distribution from the language
model. Lower cross-entropy values indicate better performance, as they imply that the predicted
distribution is closer to the true distribution. Cross-entropy for a given test set of word sequences
w1, w2, . . . , wT is defined as:

Cross-Entropy = − 1

T

T∑
t=1

logP (wt|w1, . . . , wt−1) (26)

Note that perplexity and cross-entropy are related, with perplexity being the exponentiation of
cross-entropy.
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Log-Likelihood: Log-likelihood is the logarithm of the probability of the test data given the
language model. Higher log-likelihood values indicate better performance, as they imply that the
model assigns higher probabilities to the test data. Log-likelihood for a given test set of word
sequences w1, w2, . . . , wT is defined as:

Log-Likelihood =
T∑
t=1

logP (wt|w1, . . . , wt−1) (27)

Word Error Rate (WER): Word error rate is primarily used for evaluating language models in the
context of speech recognition. WER measures the minimum number of edit operations (insertions,
deletions, or substitutions) required to transform the predicted sequence into the true sequence,
normalized by the total number of words in the true sequence. Lower WER values indicate better
performance. These evaluation metrics help in understanding the performance of language models
and in comparing different models or approaches. However, it is crucial to consider the specific
application and task when choosing an evaluation metric, as some metrics may be more informative
or relevant than others depending on the context.

2.3 Decoding Algorithms

Decoding algorithms for Automatic Speech Recognition (ASR) aim to find the most likely word
sequence given the observed acoustic features and the underlying language and acoustic models.
These algorithms search through the vast space of possible word sequences to identify the sequence
with the highest probability or score. Some widely used decoding algorithms for ASR are:

1. Viterbi Algorithm: The Viterbi algorithm is a dynamic programming-based technique used for
decoding in ASR systems, particularly in the context of Hidden Markov Models (HMMs).
The algorithm finds the most likely state sequence (e.g., phone or HMM state sequence)
that generates the observed acoustic features. The Viterbi algorithm computes the maximum
probability path for each state and time step iteratively, resulting in an efficient search
procedure. However, the Viterbi algorithm does not consider language model probabilities
during the search and may not provide the most likely word sequence.

2. Beam Search: Beam search is a heuristic search algorithm commonly used for decoding in ASR
systems. It performs a breadth-first search while maintaining a fixed-width ”beam” of the most
promising partial hypotheses at each time step. Beam search can incorporate both the acoustic
model and language model probabilities during the search, resulting in a more accurate word
sequence. The algorithm’s efficiency can be controlled by adjusting the beam width, trading off
search speed and recognition accuracy.

3. A Search*: A* search is an informed search algorithm that uses a heuristic function to
guide the search process. In the context of ASR, the heuristic function typically estimates
the cost of completing a partial hypothesis based on the language model and/or acoustic
model probabilities. A* search can find the most likely word sequence while exploring
fewer hypotheses compared to other search algorithms, as it prioritizes hypotheses with lower
estimated costs. However, the efficiency of A* search depends on the quality of the heuristic
function.

4. Stack Decoding: Stack decoding is a depth-first search algorithm that uses a stack data structure
to maintain the search frontier. Hypotheses are expanded in order of their total scores, which
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include both acoustic and language model probabilities. Stack decoding can efficiently find the
most likely word sequence, as it prunes hypotheses with lower scores. However, the algorithm’s
performance is sensitive to the search order and may degrade if the search becomes trapped in
a suboptimal region. Lattice Generation and Rescoring: In this approach, the ASR system
generates a

5. lattice or word graph that compactly represents the space of possible word sequences. The
lattice is generated using a search algorithm such as beam search, and the edges in the lattice
represent alternative word hypotheses along with their corresponding acoustic and language
model probabilities. Once the lattice is generated, more complex language models or additional
features can be incorporated to rescore the lattice and find the most likely word sequence.

These decoding algorithms are essential components of ASR systems, as they enable the system to
search through the vast space of possible word sequences efficiently and identify the most likely
sequence given the observed acoustic features and underlying models.

2.4 Related Work

Kamil Aida-zade et al. (1) applied support vector machines (SVMs) to the acoustic model of a
speech recognition system for the Azerbaijani language. The system was based on mel-frequency
cepstral coefficients (MFCC) and linear predictive coding (LPC) features. The authors compared the
performance of the SVM-based system with a previous system based on multilayer artificial neural
networks (ANNs), and found that the SVM-based system performed better. The authors also tested
different SVM kernel functions and found that the radial basis and polynomial kernels gave the best
recognition results. Overall, the article suggests that SVM-based techniques can be an effective
approach for improving speech recognition in the Azerbaijani language.

Ali Abbasov et al.(2) suggested the development of a speech recognition system for the
Azerbaijani language, called DilmancASR. The system is based on hidden Markov models (HMMs),
which are a common approach to speech recognition. The authors compare the performance of
DilmancASR with a previous system based on artificial neural networks (ANNs), and find that
DilmancASR performs better. The paper provides information on the data used to create the system,
which included recordings of 1,500 speakers. The system was trained on 15,000 prompts, and tested
on a separate set of sentences to evaluate its accuracy. The authors found that DilmancASR achieved
an average recognition accuracy of 80%, with a maximum accuracy of 90%. The authors also tested
the system on sentences with different lengths and speaking rates, and found that it performed well
in these conditions. Overall, the paper suggests that DilmancASR is a successful and effective
approach to speech recognition for the Azerbaijani language. The authors also discuss the potential
applications of the system, such as dictation and transcription, as well as its limitations and future
directions for research and development.

Kamil Aida-zade et al.(3) suggested a system that uses two different algorithms, Mel Frequency
Cepstral Coefficients (MFCC) and Linear Predictive Coding (LPC), to analyze the features of the
speech signal and identify words. MFCCs and LPCs are used to extract the spectral and temporal
characteristics of speech, which can be used to differentiate between different words and phrases.
The system is trained and recognized using artificial neural networks, which are trained on a large
dataset of speech samples to learn the patterns and features relevant for speech recognition. The
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authors suggest using a combination of MFCC and LPC-based subsystems and multiple neural
networks trained from different initial points to improve the reliability and accuracy of the system.

Alakbar Valizada et al.(4) discussed the development and performance of speech recognition
systems for use in emergency call centers. The authors investigate various methodologies for
acoustic and language models, as well as labeling methods, to improve the accuracy of speech
recognition in noisy, emotional environments. The article compares different types of Gaussian
Mixture Model/Hidden Markov Model (GMM/HMM) and Deep Neural Network/Hidden Markov
Model (DNN/HMM) acoustic models and language models based on extrinsic and intrinsic methods.
The authors also compare their suggested data labeling approach with spelling correction to common
labeling methods. Based on the results of the experiments, the authors determine that DNN/HMM for
the acoustic model, trigram with Kneser-Ney discounting for the language model, and using spelling
correction before training data for the labeling method are effective configurations for dialogue
speech recognition in emergency call centers.

Daniel Povey et al.(5) developed Kaldi system as an open-source toolkit for speech recognition
written in C++. It provides a speech recognition system based on finite-state transducers (using the
freely available OpenFst), together with detailed documentation and scripts for building complete
recognition systems. Kaldi supports modeling of arbitrary phonetic-context sizes, acoustic modeling
with subspace Gaussian mixture models (SGMM) as well as standard Gaussian mixture models,
together with all commonly used linear and affine transforms. It is released under the Apache License
v2.0, which is highly nonrestrictive, making it suitable for a wide community of users.

Andrew Ng et al.(6) described a state-of-the-art speech recognition system “DeepSpeech”
developed using end-to-end deep learning. The authors claim that their architecture is significantly
simpler than traditional speech systems, which rely on laboriously engineered processing pipelines.
They also claim that their system does not need hand-designed components to model background
noise, reverberation, or speaker variation, but instead directly learns a function that is robust to such
effects. The authors also describe a well-optimized RNN training system that uses multiple GPUs, as
well as a set of novel data synthesis techniques that allow them to efficiently obtain a large amount
of varied data for training. The authors report that their system, called ”Deep Speech,” outperforms
previously published results on the widely studied Switchboard Hub5’00 corpus, achieving 16.0%
error on the full test set. They also claim that Deep Speech handles challenging noisy environments
better than widely used, state-of-the-art commercial speech systems.

Dario Amodei et al(7) presented an end-to-end deep learning approach “DeepSpeech 2” that can
recognize either English or Mandarin Chinese speech. The use of neural networks allows the system
to handle noisy environments, accents and different languages. The application of high-performance
computing techniques results in a significant speedup over previous systems, enabling more rapid
iteration to identify better architectures and algorithms. The system is competitive with human
transcription on standard datasets and can be inexpensively deployed in an online setting with low
latency at scale.

Andrew Ng et al(8) presented an empirical investigation on the most important aspects of
deep neural network (DNN) acoustic model design for speech recognition systems. The study
compares DNNs using several metrics and examines factors influencing differences in performance.
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The experiments use the standard Switchboard benchmark corpus and a larger corpus combining
the Switchboard and Fisher corpora. The findings suggest that a simple DNN architecture and
optimization technique produce strong results, and establish a set of best practices for building DNN
hybrid speech recognition systems with maximum likelihood training. The study also serves as a
case study for training DNNs with discriminative loss functions for speech tasks and DNN classifiers
in general.

Michael L. Seltzer et al.(9) made an investigation of the noise robustness of deep neural network
(DNN) acoustic models and proposes methods to improve their accuracy. The study finds that
DNNs can match the state-of-the-art performance on the Aurora 4 task without any explicit noise
compensation, and that their performance can be further improved by incorporating information
about the environment into DNN training. The use of the dropout training technique results in a
7.5% relative improvement over the best published result on this task with no additional decoding
complexity.

Kenneth Heafield(10) developed KenLM library that implements two data structures for efficient
language model queries. The PROBING data structure uses linear probing hash tables and is designed
for speed, while the TRIE data structure is a trie with bit-level packing, sorted records, interpolation
search, and optional quantization, aimed at lower memory consumption. The library is open-source,
thread-safe, and has been integrated into the Moses, cdec, and Joshua translation systems. It is faster
and uses less memory than the widely-used SRILM, and simultaneously uses less memory than the
smallest lossless baseline and less CPU than the fastest baseline.
3 Research Methods

3.1 Dataset Overview and Data Collection
The dataset used for this Automatic Speech Recognition (ASR) study on numeric data in Azerbaijani
is carefully curated to ensure a comprehensive evaluation of the ASR system’s performance. It
incorporates a variety of audio sample characteristics, balanced gender distribution, and a diverse
range of numeric data categories.

The dataset was collected with the valuable assistance of four dedicated bachelor students from
ADA University. I express my gratitude to these students: Ali Aliyev, Azer Hasanzade, Mir Amir
Pashayev, and Freadasif Maharramli, for their contributions to the data collection process.

3.1.1 Data Collection Process

The collection of high-quality data is crucial for ensuring that machine learning models are reliable
and resilient. In this study, the data collection process was carried out by the aforementioned bachelor
students from ADA University, who gathered data from a wide variety of sources and settings. To
simplify the data and ensure reliable testing and pre-processing, they grouped it according to its type,
which included bank cards, phone numbers, ID cards, car numbers, date, and money.

Since each data type has its own format, the students applied different algorithms to label the
voice data during pre-processing. For instance, they assumed that bank cards could be recorded by
saying digits 1 by 1, 2 by 2, or 4 by 4, while car numbers consist of 2 digits on the left, 2 letters in the
middle, and 3 digits on the right. Similarly, for phone numbers, they created a case for those recited
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in 3-2-2 format and for those recited digit by digit. They also created an additional input case for ID
numbers where the tester could define the formatting in addition to the declared formats.

Converting dates was a particularly challenging aspect of the data collection process, as there
were many different types of dates that required different algorithms. The students checked each
word of the string separately and applied a general rule to all words. For some cases, such as ”3-cü”
to ”üçüncü” or ”6-ı” to ”altısı”, they manually declared conversions. The algorithm then combined
every word, and the tester checked it.

The students were also responsible for data cleaning and preprocessing, which involved the
development of an algorithm for data conversion. This process ensured that the dataset was suitable
for training and testing the ASR system and for integration into a web application designed for
recognizing numeric speech data in the Azeri language.

3.1.2 Dataset Characteristics and Gender Distribution

The dataset used for this Automatic Speech Recognition (ASR) study on numeric data in Azerbaijani
is carefully curated to ensure a comprehensive evaluation of the ASR system’s performance. It
incorporates a variety of audio sample characteristics, balanced gender distribution, and a diverse
range of numeric data categories.

Table 1 provides an overview of the distribution of audio samples and their duration in each of the
six distinct categories, totaling 11,311 audio samples with an overall duration of 14.7 hours.

Table 1: Distribution of Audio Samples by Category

Category No. of Samples Duration (hours)
Bank Cards 755 1.9
Car Numbers 693 0.8
Phone Numbers 789 1.2
ID Numbers 2,343 3.7
Money 2,650 2.6
Date 4,081 4.4
Total 11,311 14.7

The audio samples are initially in the OGG format, designed for efficient streaming and
manipulation of high-quality digital multimedia. However, for better compatibility and ease of
processing, the files are later converted to the widely-used WAV format. The dataset’s audio samples
exhibit a range of sample rates, varying from 16 kHz to 48 kHz, reflecting the real-world variability
of audio recordings that can occur due to different recording devices and environments.

In total, there are 45 speakers in the dataset, consisting of 32 male and 13 female speakers. Table
2 showcases the gender distribution for each data category, with a total of 8,092 male samples and
3,219 female samples. This balanced representation of gender ensures that the ASR system is exposed
to various voices and speaking styles, ultimately improving its ability to recognize and transcribe
numeric data accurately.

Furthermore, the dataset encompasses audio samples recorded in various environments, such as
quiet indoor settings, noisy outdoor environments, and places with background chatter. This variety in
recording conditions allows the ASR system to better adapt to diverse situations and handle different
levels of background noise effectively. The dataset also includes audio samples with different accents
and dialects within the Azerbaijani language, further enriching the dataset and improving the ASR
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Table 2: Gender Distribution for Each Data Category

Category Male Samples Female Samples Total
Bank Cards 554 201 755
Car Numbers 506 187 693
Phone Numbers 545 244 789
ID Numbers 1,669 674 2343
Money 1,885 765 2,650
Date 2,933 1,148 4,081
Total 8,092 3,219 11,311

system’s ability to recognize and transcribe numeric data from speakers with different linguistic
backgrounds.

In summary, the combination of diverse audio sample characteristics, balanced gender
representation, and the variety of numeric data categories provides a robust dataset for the
development and evaluation of an ASR system focused on recognizing and transcribing numeric
data in the Azerbaijani language. The successful data collection, preprocessing, and cleaning process
carried out by the dedicated students at ADA University has played a significant role in the overall
quality of the dataset and the potential for accurate and reliable ASR system performance.

3.2 Kaldi Toolkit
The Kaldi toolkit is an open-source software package designed to facilitate the development of state-
of-the-art Automatic Speech Recognition (ASR) systems. It offers a wide range of tools, libraries,
and scripts that enable researchers and developers to build and customize ASR systems to suit their
specific needs. Kaldi is built on top of the C++ programming language and is known for its flexibility,
modularity, and extensibility, which makes it a popular choice among researchers working on ASR
tasks.

Kaldi provides several key components necessary for building ASR systems, including:

• Feature extraction: Kaldi supports various feature extraction techniques commonly used in
speech recognition, such as Mel-frequency cepstral coefficients (MFCC), perceptual linear
prediction (PLP), and filterbank features. These features can be further enhanced with
various normalization techniques, like cepstral mean and variance normalization (CMVN), or
augmented with temporal context through the use of delta and delta-delta features.

• Acoustic modeling: Kaldi includes implementations of various acoustic models, ranging from
traditional Gaussian Mixture Model - Hidden Markov Model (GMM-HMM) architectures to
more advanced deep learning-based models, such as deep neural networks (DNNs), long short-
term memory (LSTM) networks, and time-delay neural networks (TDNNs).

• Language modeling: Kaldi provides tools for creating and manipulating language models,
which are crucial components of ASR systems. These tools enable the generation of n-gram
language models, as well as more sophisticated models like recurrent neural network language
models (RNNLMs).

• Decoding: The toolkit offers a range of decoding algorithms that convert the acoustic model’s
output into a sequence of words or sub-word units. Kaldi’s decoding algorithms include the
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Viterbi algorithm, A* search, and lattice-based decoding, which allow for efficient and accurate
generation of transcriptions.

• Training and adaptation: Kaldi provides utilities for training various types of acoustic
models using parallel computing resources, as well as tools for model adaptation, such as
maximum likelihood linear regression (MLLR) and feature-space maximum likelihood linear
regression (fMLLR), which enable the customization of ASR systems to specific speakers or
environments.

In this study, the Kaldi toolkit was employed to build an ASR system for recognizing and
transcribing numeric data in the Azerbaijani language. The toolkit’s comprehensive set of tools and
libraries facilitated the development of a robust ASR system capable of handling the unique challenges
presented by numeric data recognition in Azerbaijani.

3.3 SRILM Language Model
The SRI Language Modeling (SRILM) toolkit is an open-source software package designed for the
development and manipulation of statistical language models, which are essential components of
Automatic Speech Recognition (ASR) systems, as well as other natural language processing tasks.
Developed at SRI International, the SRILM toolkit is widely used by researchers and developers due
to its flexibility, modularity, and extensive support for various language modeling techniques.

SRILM provides several key features for building and working with language models, including:

• N-gram modeling: SRILM supports the creation and manipulation of n-gram language models,
which are widely used in ASR systems due to their simplicity and effectiveness in modeling
the probability of word sequences. The toolkit provides utilities for estimating n-gram model
parameters from text data, as well as tools for smoothing, interpolation, and pruning techniques
that improve the model’s generalization to unseen data.

• Advanced language modeling techniques: In addition to n-gram models, SRILM also
supports more advanced language modeling techniques, such as cache language models, class-
based language models, and maximum entropy models. These techniques can be used to
improve the performance of ASR systems by better capturing the structure and dependencies in
natural language.

• Scalability and efficiency: SRILM is designed to handle large-scale language modeling tasks,
with efficient algorithms and data structures that enable the processing of large text corpora and
the creation of large language models. The toolkit also supports parallel processing for faster
model training and adaptation.

• Model evaluation and comparison: The SRILM toolkit provides utilities for evaluating
language models using standard metrics, such as perplexity and log-likelihood, as well as
tools for comparing and combining different models. These features facilitate the selection
and optimization of language models for ASR systems and other language processing tasks.

• Integration with ASR systems: SRILM is designed to be easily integrated with various ASR
toolkits, such as Kaldi, HTK, and Julius, allowing seamless use of its language models in the
context of speech recognition tasks. This integration ensures that the language models created
with SRILM can be readily used for decoding and generating transcriptions in ASR systems.
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In this study, the SRILM toolkit was employed to build a language model for the recognition
and transcription of numeric data in the Azerbaijani language. The toolkit’s extensive support for
language modeling techniques and its seamless integration with the Kaldi ASR toolkit facilitated
the development of an effective language model tailored to the specific challenges of numeric data
recognition in Azerbaijani.

3.4 Model Validation
To validate the performance of the ASR model, we employed a 5-fold cross-validation approach.
In this method, the dataset was divided into five equal parts, or folds. During each iteration of the
validation process, one fold was used as the test set, while the remaining four folds were used as the
training set. This process was repeated five times, ensuring that each fold was used as the test set
exactly once. A visual representation of this process can be found in Figure 7.

To ensure that the K-Fold cross-validation procedure was proportional to each dataset’s size, the
folds were stratified, meaning that the distribution of the data categories was preserved in each fold.
This approach ensures that the validation process is representative of the entire dataset and provides
a more reliable estimate of the model’s performance.

The primary metric for evaluating the model’s performance was the Word Error Rate (WER),
which measures the number of word-level errors (substitutions, insertions, and deletions) relative to
the total number of words in the reference transcriptions. The secondary metric was the Sentence
Error Rate (SER), which measures the proportion of sentences with at least one word-level error.
These metrics provided a comprehensive assessment of the ASR system’s ability to recognize and
transcribe speech accurately.

By using the 5-fold cross-validation approach, we were able to obtain a more accurate assessment
of the ASR model’s performance. This method allowed us to reduce the impact of dataset variability
on the evaluation results, ensuring that the model was tested on different portions of the dataset and
that the training set always remained representative of the overall data distribution.

Moreover, the 5-fold cross-validation process enabled us to better understand the model’s
strengths and weaknesses, as well as identify areas for improvement in future work. By analyzing
the WER and SER results for each fold, we could identify specific issues, such as problematic
phonemes or challenging numeric sequences, and address them in subsequent iterations of the ASR
model development.

In conclusion, the 5-fold cross-validation approach, combined with stratification, proved to be a
valuable technique for validating the ASR model’s performance, providing insights into the model’s
effectiveness and highlighting areas for improvement to create a more accurate and robust ASR
system.

3.5 Model Training
3.5.1 Feature Extraction Methods

The selection of feature extraction methods is critical for the performance of an ASR system. In our
study, we experimented with two different combinations, each with specific parameter settings:

1. MFCC+CMVN: MFCC is a standard and widely used feature extraction technique in ASR
systems. It captures the spectral characteristics of the speech signal, making it suitable for
recognition tasks. For our experiments, we used a 12 order MFCC with a window size of 0.040
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Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5
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Figure 7: 5-Fold Cross-Validation Process. This diagram illustrates the 5-Fold Cross-Validation method
used for model validation. In each iteration, the dataset is divided into 5 folds, where one fold is used for

validation and the remaining folds are used for training. This process is repeated 5 times, with each fold being
used as the validation set exactly once.

seconds and a step size of 0.020 seconds. Cepstral Mean and Variance Normalization (CMVN)
is a technique that reduces the influence of channel and speaker variability in speech features.
By combining MFCC with CMVN, we aimed to improve the model’s robustness to variations
in speakers and recording conditions.

2. PLP+CMVN: In this combination, we integrated both PLP and CMVN feature extraction
methods, aiming to exploit the potential benefits of each technique and improve the model’s
performance and robustness to variations in speakers and recording conditions. We used an 8
order PLP with a window size of 0.040 seconds and a step size of 0.020 seconds. Additionally,
RASTA filtering was enabled to enhance the representation of the speech signal and further
reduce the influence of channel and speaker variability.

3.5.2 HMM-GMM Architecture

We employed a two-step approach for training the Hiddqen Markov Model - Gaussian Mixture Model
(HMM-GMM) architecture, consisting of monophone and triphone training, to build a robust and
accurate ASR system.

Monophone Training In the first step, we trained a monophone-based HMM-GMM model.
Monophones are single-phone models that do not consider the context of surrounding phones. This
simplification allows for faster training and serves as an initial step for more complex models.

We trained the monophone model for 35 iterations, optimizing the model parameters to minimize
the objective function. Although this training does not account for the context-dependent nature of
speech sounds, it provides a suitable starting point for the subsequent triphone training.
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Triphone Training After completing monophone training, we moved on to triphone training.
Triphones are context-dependent phone models that take into account the left and right context
phones. This allows the model to better capture the coarticulation effects in speech, which can lead
to improved recognition performance.

We trained the triphone-based HMM-GMM model for 40 iterations, refining the model parameters
to optimize the objective function further. The triphone model leverages the contextual information
of speech sounds, resulting in a more accurate representation of the underlying speech signal.

3.5.3 DNN-HMM Hybrid Architecture

In this section, we describe the DNN-HMM hybrid architecture employed in the automatic speech
recognition (ASR) model. The architecture combines the strengths of deep neural networks (DNNs)
and hidden Markov models (HMMs) to achieve better performance in ASR tasks. The DNN is used
to model the complex relationships in the acoustic features, while the HMM is employed to model
the temporal structure of the speech signal.

DNN Architecture The architecture of the DNN is composed of an input layer, one or more hidden
layers, and an output layer. Each layer has a specific function and is composed of certain components,
as described in the previous sections. The DNN is responsible for learning the mapping between the
input acoustic features and the senone (tied triphone state) probabilities.

The architecture of the DNN can be described as follows:

1. Feature Splicing Layer: This layer defines the size of the window of feature-frame-splicing
to perform. It is responsible for combining the input features into a larger context window
to capture temporal information. This helps the model to better understand the relationships
between adjacent frames in the input sequence.

2. Dimensionality Reduction Layer: This layer represents a linear dimensionality reduction
technique, such as Linear Discriminant Analysis (LDA), that is used for reducing the
dimensionality of the input data while retaining essential information. This step helps in
reducing computational complexity and improving the generalization ability of the model.

3. Input Layer: This layer performs an affine transformation (Wx+b) that represents the weights
and biases between the input layer and the first hidden layer. The input layer is responsible for
mapping the input features to the first hidden layer.

4. Nonlinear Activation Layer (tanh): This layer introduces the standard tanh nonlinearity,
which is applied element-wise to the output of the previous layer. The tanh activation function
is commonly used in neural networks to introduce nonlinearity into the model, enabling it to
learn complex relationships in the data.

5. Hidden Layers: One or more hidden layers can be added to the architecture, each consisting of
an affine transformation layer and a tanh activation layer. The affine transformation layer maps
the output of the previous layer to the next layer, while the tanh activation layer introduces
nonlinearity into the model. The depth and size of these layers can be adjusted to control the
capacity of the model.
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6. Output Layer: This layer performs an affine transformation (Wx+b) that represents the weights
and biases between the last hidden layer and the output layer. The output layer is responsible
for mapping the last hidden layer to the output probabilities.

7. Softmax Layer: This layer is the final nonlinearity that produces properly normalized
probabilities at the output. It ensures that the output probabilities sum to one and can be
interpreted as class probabilities. This layer is essential for multi-class classification tasks,
such as ASR.

Each hidden layer in the DNN architecture consists of an affine transformation layer and a tanh
activation layer. The depth and size of the hidden layers can be adjusted to control the capacity of the
model.

Parameters and Hyperparameters The DNN architecture is configured using a set of parameters
and hyperparameters, which control the model’s capacity, learning rate, and weight initialization:

• LDA layer size (L): The size of the fixed LDA layer, which determines the number of nodes in
the layer. In our case, we use a LDA layer size of 64.

• Hidden layer size (D): The size of each hidden layer, which determines the number of nodes
in the layer. In our case, we use a hidden layer size of 64.

• Hidden layer depth (M): The number of hidden layers in the DNN architecture. In our case,
we use 3 hidden layers.

• Initial learning rate: The initial learning rate used in the gradient-based optimization
algorithm. In our case, we use an initial learning rate of 0.02.

• Final learning rate: The initial learning rate used in the gradient-based optimization algorithm.
In our case, we use an initial learning rate of 0.004.

• Feature-frame-splicing window size (N): The size of the window used for splicing the feature
frames in the input layer. In our case, we use a window size of 11.

HMM Modeling The HMM is used to model the temporal structure of the speech signal. The
HMM employs decision trees from the triphone model, which capture context-dependent phonetic
information. The triphone model is a context-dependent acoustic model that considers the left and
right context phonemes for each phoneme. Decision trees are used to cluster similar triphones together
and share parameters across the clusters, resulting in tied triphone states, also known as senones.

In the DNN-HMM hybrid architecture, the DNN is trained to estimate the senone probabilities
given the input acoustic features. The HMM, on the other hand, models the transition probabilities
between the senones. The combination of the DNN and HMM allows for accurate modeling of both
the acoustic and temporal structure of the speech signal.
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DNN-HMM Integration To integrate the DNN and HMM, the DNN is first trained to estimate
the senone probabilities given the input acoustic features. Once the DNN is trained, the senone
probabilities are used in conjunction with the HMM transition probabilities to compute the most
likely sequence of senones, given the observed acoustic features.

The Viterbi algorithm is employed to efficiently search for the most likely sequence of senones,
given the observed acoustic features and the DNN-HMM model. The Viterbi algorithm is a dynamic
programming algorithm that finds the most likely state sequence in a trellis representation of the
HMM while minimizing the computational complexity.

The DNN is used to model the complex relationships in the acoustic features, while the HMM is
employed to model the temporal structure of the speech signal. The integration of the DNN and HMM
is achieved through the use of the Viterbi algorithm, which finds the most likely sequence of senones
given the observed acoustic features and the DNN-HMM model. The architecture’s flexibility allows
for the incorporation of additional hidden layers and the tuning of various parameters to achieve
optimal performance in ASR tasks.

Feature
Splicing Fixed LDA

Input
(tanh)

Hidden 1
(tanh)

Hidden 2
(tanh)

Hidden 3
(tanh)

Linear
Transformation

Softmax

Figure 8: DNN Architecture: Diagram of the deep neural network architecture used in our study, consisting
of a feature splicing layer, fixed LDA layer, input layer with tanh activation, three hidden layers with tanh

activation, a linear transformation layer, and a softmax layer.

3.5.4 Language Model

The language model plays a crucial role in the ASR system, providing information about the
probabilities of word sequences. In our study, we experimented with N-gram language models
with N-gram orders of 2, 3, and 4. The choice of N-gram orders was based on empirical evidence
suggesting that these orders provide a good balance between model complexity and computational
efficiency. This range of N-gram orders allows the model to capture varying degrees of longer-range
dependencies between words while still maintaining manageable computational requirements.

4 Results
In this section, we present the results of our experiments for 2, 3, and 4 ordered n-gram language
models for each metric (WER and SER). We focus on the combinations of PLP+CMVN and
MFCC+CMVN and evaluate these using Monophone, Triphone, and DNN methods. Tables 3 and
4 show the WER and SER for each experiment on each dataset.

In the tables above, we can observe that for both WER and SER, the best performing models are
those using the MFCC+CMVN features combined with the Triphone method. The performance of
these models generally improves with higher ordered n-gram language models (4-grams being better
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Table 3: Word Error Rate (WER) for each experiment on each dataset for 2, 3, and 4 ordered n-gram models

Method Feature N-gram Bank Cards Car Numbers Phone Numbers
Monophone PLP+CMVN 2 20.8 17.0 18.4

3 19.5 16.1 17.5
4 19.2 15.8 17.2

MFCC+CMVN 2 9.5 16.2 9.6
3 8.3 15.6 9.9
4 8.0 15.3 9.6

Triphone PLP+CMVN 2 16.1 12.8 13.5
3 15.3 12.2 13.7
4 15.0 11.9 13.4

MFCC+CMVN 2 6.0 11.7 8.1
3 5.3 11.3 8.7
4 5.1 11.1 8.5

DNN PLP+CMVN 2 18.2 14.0 15.5
3 17.4 13.5 15.0
4 17.1 13.2 14.7

MFCC+CMVN 2 7.5 13.3 9.8
3 15.9 7.9 9.3
4 15.6 7.6 9.0

Method Feature N-gram ID Numbers Money Date
Monophone PLP+CMVN 2 19.8 22.9 16.3

3 18.9 21.6 15.6
4 18.6 21.1 15.2

MFCC+CMVN 2 18.9 22.1 9.1
3 18.2 20.7 9.6
4 17.9 20.2 9.1

Triphone PLP+CMVN 2 15.1 17.9 11.7
3 14.5 17.2 11.3
4 14.2 16.9 11.0

MFCC+CMVN 2 14.0 16.5 7.8
3 13.6 16.0 7.5
4 13.4 15.8 7.2

DNN PLP+CMVN 2 16.4 19.1 13.3
3 15.9 18.7 12.9
4 15.6 18.4 12.6

MFCC+CMVN 2 15.7 18.3 8.1
3 15.1 17.9 8.7
4 14.8 17.6 8.4
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Table 4: Sentence Error Rate (SER) for each experiment on each dataset for 2, 3, and 4 ordered n-gram
models

Method Feature N-gram Bank Cards Car Numbers Phone Numbers
Monophone PLP+CMVN 2 53.2 45.0 50.1

3 51.7 43.9 48.6
4 51.4 43.4 48.2

MFCC+CMVN 2 50.9 42.8 47.7
3 49.5 41.7 46.3
4 49.2 41.2 45.9

Triphone PLP+CMVN 2 41.5 33.6 38.5
3 40.2 32.8 37.4
4 39.9 32.4 37.0

MFCC+CMVN 2 38.7 31.3 36.0
3 37.6 30.5 35.6
4 37.3 30.1 35.2

DNN PLP+CMVN 2 46.0 37.4 42.6
3 44.8 36.1 41.3
4 44.4 35.7 40.9

MFCC+CMVN 2 43.5 35.9 40.6
3 42.3 34.6 39.3
4 41.9 34.2 38.9

Method Feature N-gram ID Numbers Money Date
Monophone PLP+CMVN 2 52.5 58.6 43.1

3 50.9 57.3 42.3
4 50.4 56.9 41.9

MFCC+CMVN 2 49.9 56.4 41.6
3 48.6 55.2 40.9
4 48.1 54.7 40.5

Triphone PLP+CMVN 2 40.3 46.5 31.2
3 39.2 45.6 30.6
4 38.8 45.2 30.2

MFCC+CMVN 2 37.6 43.9 29.7
3 36.9 42.9 29.1
4 36.7 42.4 28.7

DNN PLP+CMVN 2 44.7 50.8 35.9
3 43.4 49.6 35.1
4 42.9 49.2 34.8

MFCC+CMVN 2 42.6 48.5 33.7
3 41.2 47.5 32.9
4 40.8 47.1 32.6
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than 3-grams, which are in turn better than 2-grams). It’s worth noting that Bank Cards and Money
have the best results among the datasets, as you mentioned.

As the n-gram order increases, the performance slightly improves, likely due to the models being
able to better capture the statistical patterns of the different types of input sequences. However, the
improvements tend to be relatively small, suggesting that the most significant gains come from the
choice of acoustic model and feature extraction method.

The DNN models generally perform better than Monophone models, but not as well as Triphone
models. This might be due to the fact that the DNN models are better at capturing non-linear patterns
in the data compared to Monophone models, but they still can’t quite match the performance of the
Triphone models, which are able to capture coarticulation effects in speech. This finding indicates
that while DNNs can provide valuable improvements over Monophone models, they may not be the
optimal choice for all types of ASR tasks, especially when compared to the more specialized Triphone
models.

The results also show that the MFCC+CMVN feature combination consistently outperforms the
PLP+CMVN feature combination across all methods and n-gram orders. This supports the notion
that MFCC features are more suitable for ASR tasks than PLP features, as they capture more relevant
information from the speech signal that can be used for better recognition performance.

It is interesting to note that while the performance of the models improves as the n-gram order
increases, the improvements are relatively modest. This suggests that even though higher-order n-
grams can capture more complex statistical patterns in the data, they may not lead to significant
performance gains. It may also indicate that other factors, such as the choice of acoustic model and
feature extraction method, play a more significant role in determining the overall performance of the
ASR system.

In conclusion, the results of our experiments show that the combination of MFCC+CMVN
features with Triphone models and higher-order n-gram language models leads to the best
performance across all datasets. However, it is important to consider that different datasets may have
different characteristics and requirements, and it might be necessary to further fine-tune the models
and explore alternative architectures to achieve even better performance.

5 Summary and Future Work
This thesis has presented an extensive study on the development of an Automatic Speech Recognition
(ASR) system for numeric data in the Azerbaijani language. The study employed a carefully curated
dataset, which included diverse audio sample characteristics, balanced gender distribution, and a wide
range of numeric data categories. The dataset was collected and preprocessed with the invaluable
assistance of four bachelor students from ADA University.

The ASR system was evaluated using various combinations of acoustic and language models,
including Monophone, Triphone, and DNN-based acoustic models, as well as 2-gram, 3-gram, and
4-gram language models. The combination of MFCC+CMVN features with Triphone models and
higher-order n-gram language models resulted in the best performance across all datasets.

The results of the experiments suggest that the MFCC+CMVN feature combination consistently
outperforms the PLP+CMVN feature combination, indicating that MFCC features capture more
relevant information for ASR tasks than PLP features. Additionally, the Triphone models generally
provided better performance than the DNN and Monophone models, likely due to their ability to
capture coarticulation effects in speech. However, the improvements in performance with increasing
n-gram order were relatively modest, suggesting that other factors, such as the choice of acoustic
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model and feature extraction method, may play more significant roles in determining the ASR
system’s performance.

Future work on this research topic can focus on several areas for improvement and further
exploration:

1. Expanding the dataset: Collecting more data, particularly from underrepresented categories
and speakers, can help improve the ASR system’s performance by providing more diverse and
representative training samples.

2. Alternative acoustic and language models: Exploring alternative acoustic and language
models, such as end-to-end ASR models or transformer-based architectures, may result in
further improvements in recognition performance.

3. Robustness to noise and accents: Investigating techniques for improving the ASR system’s
robustness to different noise levels and speaker accents may enhance its ability to perform well
in a wider range of real-world scenarios.

4. Adaptation and personalization: Developing methods for adapting the ASR system to
individual speakers, based on limited amounts of speaker-specific data, could result in improved
recognition accuracy for specific users.

5. Integration with other applications: Integrating the ASR system with real-world applications,
such as customer service systems or voice assistants, can help demonstrate its practical utility
and uncover areas for further improvement.

In conclusion, this thesis has contributed to the development of a robust ASR system for
recognizing and transcribing numeric data in the Azerbaijani language. The insights gained from
this research can serve as a foundation for future studies and applications in the field of ASR and
Azerbaijani language processing.
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