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We suggested different structured hybrid systems for the sentence-level subjectivity analysis based on three supervised machine
learning algorithms, namely, Hidden Markov Model, Fuzzy Control System, and Adaptive Neuro-Fuzzy Inference System. The
suggested feature extraction algorithm in our experiment computes a feature vector using statistical textual terms frequencies in
a training dataset not having the use of any lexical knowledge except tokenization. Taking into consideration this fact, the above-
mentionedmethodsmay be employed in other languages as thesemethods do not utilize themorphological, syntactical, and lexical
analysis in the classification problems.

1. Introduction

Identification of subjective data from web documents having
opinions within are gaining incrementing interest. Opinions
are often views formed by individuals about their sentiments,
appraisals, or feelings, etc., not necessarily based on fact or
knowledge. Identification of subjectivity attempts to recog-
nize if this written piece of work conveys opinions (personal)
or a body of objective facts [1]. This analysis has been utilized
in many natural language and text mining solutions. With
the aim of generating more instructive data, subjectivity
detection has been employed as a primary sifting stage in a
lot of natural language processing assignments.

Through our experimentation we are aiming to work out
techniques in order to establish classifiers able to identify
subjective expressions from objective ones. By means of
language independent feature weighting, in the experiment
the sentence-level subjectivity classification is attained. A
subjectivity database from the opinions about films of “Rotten
Tomatoes” [2] was deployed as an experiment.

In the paper, we suggested different structures of hybrid
systems based on various supervised machine learning
algorithms such as Hidden Markov Model (HMM), Adap-
tive Neuro-Fuzzy Inference System (ANFIS), and Fuzzy
Control System (FCS) which achieved sufficient results.
These machine learning methods have been employed for

subjectivity analysis individually [3, 4] and our aim is to
improve performance of classification by using hybrid sys-
tems, which is successfully applied by us in sentiment analysis
and natural language call routing problem [5, 6]. Our feature
extraction algorithm computes a feature vector using the
statistical textual terms frequencies in the corpus not having
the use of any lexical knowledge except tokenization. Taking
into consideration this fact, the above-mentioned methods
may be employed in other languages as these methods do
not utilize the lexical, grammatical, and syntactical analysis
within the classification process.

2. Related Work

With the aim of recognizing the subjective data in written
piece of work or speech, various nonsimilar supervised
and unsupervised learning algorithms have been recently
analyzed.

A bootstrap technique was employed by Riloff andWiebe
[7] with the aim of studying subjectivity classifiers from
a nonannotated texts collection. An identical method was
applied by Wiebe and Riloff [8]; however, they studied
objective sentences aside from subjective sentences.

With the objective to classify subjective and objective sen-
tences, a MinCut based algorithm was deployed by Pang and
Lee [9]. Through this experiment they targeted eliminating
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objective expressions from each analysis and ameliorating the
classification accuracy up to 86.4%.

A Web mining technique was offered by Grefenstette et
al. [10] in order to identify subjective adjectives.

Techniques of classifying the strength of opinion within
personal sentences were suggested by Wilson et al. [11] and
Kim et al. [12].

Subsumption relationships were defined by Riloff et al.
[13] within n-grams, unigrams, and lexico-syntactic samples.
It was discovered that, in case of subsumption of one feature
by another, there is no need for subsumed feature. The
subsumption pecking order eliminates a feature set; hence
the eliminated feature sets may ameliorate classification
functionality.

The utilization of prosodic feature, word 𝑛-grams, char-
acter 𝑛-grams, and phoneme 𝑛-grams for subjectivity iden-
tification and polarity subsumption of conversation acts in
multiparty dialog was researched by Raaijmakers et al. [14].
It was figured out that, for subjectivity detection, an asso-
ciation of phoneme-level information, word-level, prosodic,
and character-level provides better performance. The best
performance is acquired with an association of phonemes,
words, and characters in polarity classification.

By utilizing 𝑛-gram word successions with fluctuating
level of lexical instantiation, the study of patterns of sub-
jectivity available both in labelled and unlabelled informa-
tion was suggested by Carenini and Murray [15]. It was
demonstrated that study of subjective written words with
fluctuating instantiation levels from both commented as
well as unprocessed information may ameliorate subjectivity
recognition and polarity labelling for speech in the meetings
and email messages.

Delta TFIDF which is the intuitional general purpose
method was suggested by Martineau and Finin [16] to weigh
word scores effectively prior to classification.The comparison
was made between the results of TFIDFs SVM difference and
SVMTermCount Baseline for subjectivity subsumption.The
comparison outcomes demonstrated that Delta TFIDF SVM
gives low variance with high accuracy.

The subjectivity of postings on Twitter was categorized
by Barbosa and Feng [17] according to two feature types
such as metainformation about the terms on tweets and
specifications of how tweets have been written.

With the aim of recognizing sentence-level subjectivity,
Yulan He [18] suggested SubjLDA through adjusting the
unused Dirichlet allocation method by including an addi-
tional layer to describe subjectivity meaning.

The classification of subjectivity at the segment level
was suggested by Benamara et al. [19] for discourse-based
sentiment analysis. Each component was classified into four
groups such as S, OO,O, and SNwherein S components com-
prise unambiguously lexicalized subjective as well as apprais-
ing phrases, OO components are positive or negative expres-
sion embodied in an objective component, O components
comprise neither a word with lexicalized subjectivity nor
embodied opinion, and SN components are subjective, how-
ever nonappraising, which are utilized to express thoughts.

Remus [20] showed that using readability formulae
and their combinations as features in addition to already

well-known subjectivity clues leads to significant accuracy
improvements in sentence-level subjectivity classification.

Bayesian model with pecking order grounded on Latent
Dirichlet Allocation, called subjLDA, for sentence-level sub-
jectivity recognition that reflexively determines if the used
expression is sentiment or fact was proposed by Lin et al., [1].

Each of thesemodels is based on English information and
an English subjectivity dictionary is utilized by most of mod-
els. Some models have been recently presented on sentence
subjectivity classification in Japanese [21], Chinese [22, 23],
Romanian [24, 25], Urdu [26], and Arabic [27] and other
models used various machine learning algorithms utilizing
universal set of features as well as language specific features.

With the aim of automatically generating resources for
a new language through utilizing the resources and instru-
ments for English for subjectivity analysis, various models
were researched by Mihalcea et al. [25] and Banea et al. [24].
With the objective of establishingmost accurate classifiers for
subjectivity classification; another method was employed by
Banea et al. [28].

Some methods which aim to discover features which
can be employed in other languages have been recently
investigated. For instance, the classification of subjectivity
which utilizes features which does not depend on language
was suggested by Mogadala and Varma [29] and tests were
conducted on 5 various languages.

Appel et al. [30] proposed a hybrid approach using
SentiWordNet [31] and fuzzy sets to estimate the semantic
orientation polarity and intensity of sentiment words, before
computing the sentence-level sentiments. Muhammad et
al. [32] introduced a lexicon-based sentiment classification
system for social media genres, which captures contextual
polarity from both local and global context. Fernández-
Gavilanes et al. [33] proposed a novel approach to predict sen-
timent in online texts based on an unsupervised dependency
parsing-based text classification method [34].

There are many other types of sentiment analysis that
have been developed, such as irony detection [35], multilin-
gual support [36], and differentiating negative emotions [37].

The application of supervised models using language
independent features for classification of objective and sub-
jective expressions is our primary target within the present
experiment.

3. Feature Extraction

Feature extraction algorithms are an important element of
any machine learning model. This algorithm is characterized
by us as instinctive and computationally effective which does
not demand any supplementary comment by individuals as
well as lexical knowledge except tokenization.Thementioned
algorithm comprises two parts: preprocessing (information
preparation) and computation of the feature vectors.

4. Preprocessing

5000 objective and 5000 subjective labelled sentences from
movie reviews are utilized for training process [9]. The
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classification based on machine learning uses two several
sets of documents such as a training set and a test set. The
training set is utilized by an automatic classifier with the aim
of learning the distinguishing features of documents, and the
test set is utilized to authenticate the performance classifier.
We currently illustrate the information dispatching in the
dataset. With the aim of forming the word list, the following
proceedings are implemented:

(i) Gather all documents from the training set and create
one whole document;

(ii) Transfigure content of the document to term matrix;

Taking into consideration that our goal is to avoid lexical
knowledge utilization, every term is considered as a single
code term. According to our algorithm characteristics, verbs
are not sorted in particular tenses (i.e., “contribute” in present
tense and “contributed” in past tense) as well as nouns in
singular or plural (i.e., “infant” in singular and “infants” in
plural). In lieu, words are considered as different terms.

We parted the data collection stochastically into 2 parts
for testing and training and created 10 folds. 90% of the
data in each folder is used for training and 10% for testing,
respectively.

5. Calculation of Feature Vectors

Frequency statistics analysis is used in majority of language
independent feature extraction algorithms. Its periodically
weighting functions are utilized. In the present research, we
endeavored to scrutinize which features were appropriate for
Neuro-Fuzzy models.

Let us describe some of the parameters:

1. 𝑀 is a number of terms in the training set;
2. 𝑁 is a number of classes;
3. 𝑅 is a number of sentences in the training set;
4. 𝑂𝑟 = {𝑜𝑟1, 𝑜𝑟2, . . . , 𝑜𝑟𝑇𝑟} are the sentences in the training

dataset, where 𝑇𝑟 is the length of rth sentence, 𝑟 =1, 2, . . . , 𝑅;
5. 𝜇𝑖,𝑗 describes the association between ith term and the
jth class (𝑖 = 1, . . . ,𝑀; 𝑗 = 1, 2, . . . , 𝑁);

6. 𝑐𝑖,𝑗 is the number of times ith term occurred in the jth
class;

7. 𝑡𝑖 = ∑𝑗 𝑐𝑖,𝑗 denotes the occurrence times of the ith
term in the training set;

8. frequency formula for the 𝑖 th term in the 𝑗th class

𝑐𝑖,𝑗 = 𝑐𝑖,𝑗𝑡𝑖 . (1)

A new weighting factor having an impact on the sys-
tem accuracy is applied so that in lieu of the quantity of
documents we take the quantity of classes in the prevalent
Inverse-Document Frequency (IDF) formula. Like IDF, we

distinguish this coefficient as Pruned ICF (Inverse-Class
Frequency) [3].

𝐼𝐶𝐹𝑖 = log2 ( 𝑁𝑑𝑁𝑖) , (2)

where 𝑖 is a term, 𝑑𝑁𝑖 is the number of classes containing the
term 𝑖, in which 𝑐𝑖,𝑗 > 𝑞, where

𝑞 = 1𝛿 ⋅ 𝑁. (3)

𝛿 = 1.4 is found empirically for the current problem.
The membership degree of the terms (𝜇𝑖,𝑗) for relevant

classes may be evaluated by specialists or can be computed
by means of empirical methods. Taking into consideration
that we target not to utilize human comments or lexical
knowledge, we estimated the membership degree of every
word through an analytical method as mentioned below (𝑖 =1, . . . ,𝑀; 𝑗 = 1, 2, . . . , 𝑁):

TF: 𝜇𝑖,𝑗 = 𝑐𝑖,𝑗∑𝑁V=1 𝑐𝑖,V ; (4)

TF ⋅ ICF: 𝜇𝑖,𝑗 = 𝑐𝑖,𝑗 ⋅ 𝐼𝐶𝐹𝑗∑𝑁V=1 𝑐𝑖,V ⋅ 𝐼𝐶𝐹V . (5)

6. Subjectivity Detection Using
Fuzzy Control System

Fuzzy inference is the process wherein themapping is formu-
lated from given data to outcome(s) through utilizing fuzzy
logic. By means of a basis provided by this mapping deci-
sions can be made, or samples can be distinguished. Fuzzy
inference process draws in logic operations if-then rules and
membership functions [38]. In lieu of expert knowledge, in
the primary phase with the aim of computing membership
function, we apply a statistical method. Afterwards, we
employ fuzzy operations and through the backpropagation
algorithm we adjust parameters. The general structure of
Fuzzy Control System is illustrated in Figure 1.

Our algorithm (𝑟 = 1, 2, . . . , 𝑅) is applied as follows.

(1) (𝜇𝑟𝑖,𝑗) - membership degree of terms of the 𝑟th sen-
tence is computed by using (4)-(5).

The Center of Gravity Defuzzification (CoGD) tech-
nique is employed for defuzzification. This method prevents
defuzzification ambiguities, in case output degree ofmember-
ship is calculated from several crisp output values.

Objective and subjective expressions classified in accor-
dance with classes are trained by a FCS.

The cost function is expressed as follows [39]:

𝐸 (𝑦) = 12
𝑅∑
𝑟=1

(∑𝑁𝑗=1 𝜇
𝑟

𝑗𝑦𝑗
∑𝑁𝑗=1 𝜇𝑟𝑗 − 𝑑𝑟)

2

󳨀→ min
𝑦∈𝑅𝑁

. (6)

𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑁), 𝑑𝑟 ∈ {1, 2, . . . , 𝑁} is the desired output.
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Figure 1: General description of FCS.

The function’s partial derivatives are computed as follows:

𝜕𝐸 (𝑦)𝜕𝑦𝑖 = 𝑅∑
𝑟=1

𝜇𝑟𝑗
∑𝑁𝑗=1 𝜇𝑟𝑗 (

∑𝑁𝑗=1 𝜇𝑟𝑗𝑦𝑗
∑𝑁𝑗=1 𝜇𝑟𝑗 − 𝑑𝑟) ,

t = 1, 2, . . . ,N.
(7)

We applied conjugate gradient decent method for mini-
mization of function (6) and used 𝑦∗ optimal value in next
stage.

𝑦 = ∑𝑁𝑗=1 𝜇𝑟𝑗𝑦∗𝑗∑𝑁𝑗=1 𝜇𝑗 . (8)

Rounding value of 𝑦 gives index of appropriate class, if it
satisfies the following condition:

𝑠 = {{{
𝑖𝑠 ∈ 𝐼, 𝑖𝑓 𝑦 ∈ (𝑖𝑠 − Δ 1, 𝑖𝑠 + Δ 1)
𝑟𝑒𝑗𝑒𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, (9)

where 𝐼 = {1, 2, . . . , 𝑁} and 𝑖𝑠 is the indicator of the relevant
class. In this case, Δ 1 ∈ [0; 0.5] is the primary quantity, which
affects to the system reliability.

Inspection of feature vector providing the best outcomes
for Fuzzy Control System is obvious. Average accuracies of
FCS over 10-fold cross validation are illustrated in Table 1.
It must be emphasized that these outcomes hinge on the
classification technique and might be dissimilar for every
classifier.

Delta TFIDF features [16] related to FCS were inspected
as well. Due to fact that Delta IDF weighting factors of
both classes are identical, the accuracy of the system is not
modified in case of employing Delta IDF weighting factor.
As it is seen from Table 1, the accuracy of the system
increases following the deployment of Pruned ICF weighting
coefficient. Recognition results of FCS with different values
of Δ 1 are given in Table 2.

The rejection result is 0.01 for Δ 1 = 0.5. It means after
applying Pruned ICF weighting 0.01% expressions’ terms
become 0 in the testing process.

Table 1: The results of Fuzzy Control Systems with TF and TF ⋅ ICF
features.

Features TF TF ⋅ ICF
Accuracy 89.87 % 91.32 %

Table 2:The results of Fuzzy Control Systems with TF ⋅ICF features.
Δ 1 = 0.3 Δ 1 = 0.4 Δ 1 = 0.5

Correct (%) 76.53 85.17 91.02
Reject (%) 20.81 10.02 0.01
Error (%) 2.66 4.81 7.97

7. Adaptive Neuro-Fuzzy Inference System For
Subjectivity Detection

General structure of Adaptive Neuro-Fuzzy Inference System
is demonstrated in Figure 2 [40]. Regarding the linguistic
notes, the fuzzy interface block gives an input vector to a
Multilayer Artificial Neural Network (MANN).

We utilized statistical evaluation of membership degree
of words by (5) in lieu of linguistic statements in the primary
phase. Afterwards, we employed (3) and (4) fuzzy operations.

MANN is applied to the output of the fuzzification
operation. The structure of MANN in ANFIS is illustrated in
Figure 3.

The main parameters of MANN are described as follows.

1. 𝐿 is the number of MANNs layers;
2. 𝑁ℓ is the number of neurons on layer 𝑙, 𝑙 = 1 ⋅ ⋅ ⋅ 𝐿;
3. 𝐼−𝑙𝑗 is set of neurons of layer (𝑙 − 1), which connected
to the neuron 𝑗 on layer 𝑙;

4. 𝜃𝑙𝑗 is bias of neuron 𝑗 on layer 𝑙;
5. 𝑤ℓ𝑖𝑗 is weighted coefficient (synapse) of connection
between neuron 𝑖 on layer (𝑙 − 1) and neuron 𝑗 on
layer 𝑙;

6. 𝑥𝑗,𝑟 is the input vector; the output of fuzzification is
given to the MANN as input, 𝑥𝑗,𝑟 = 𝜇𝑟𝑗;
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Figure 2: The general structure of Adaptive Neuro-Fuzzy Inference System.
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Figure 3: The structure of MANN in ANFIS.

7. 𝑠ℓ𝑗,𝑟 and 𝑦ℓ𝑗,𝑟 are state and output value of neuron 𝑗 on
layer 𝑙 for input signal 𝑥𝑟 ∈ 𝑋 of the neural networks.

𝑠𝑙𝑗,𝑟 = ∑
𝑖∈𝐼−
𝑙𝑗

𝑤𝑙𝑖𝑗 ⋅ 𝑦𝑙−1𝑖,𝑟 + 𝜃𝑙𝑗, (10)

𝑦𝑙𝑗,𝑟 = 𝑓 (𝑠𝑙𝑗,𝑟) , 𝑗 = 1, . . . , 𝑁𝑙, 𝑙 = 1, . . . , 𝐿, (11)

𝑦0𝑗,𝑟 = 𝑥𝑗,𝑟, 𝑗 = 1, . . . , 𝑁0, (12)

where 𝑓(⋅) is a given nonlinear activation function for which
we use the hyperbolic tangent

𝑓tan (𝑧) = 𝑒𝑧 − 𝑒−𝑧𝑒𝑧 + 𝑒−𝑧 . (13)

Let the training set {𝑥𝑟, 𝑑𝑟}, 𝑟 = 1, . . . , 𝑅 pairs be given,
where 𝑑𝑟 = (𝑑1,𝑟, . . . , 𝑑𝑁𝐿,𝑟) is desired output for 𝑥𝑟 input
signal. The training of MANN consists in finding such 𝑤ℓ𝑖𝑗
and 𝜃ℓ𝑗 𝑖 ∈ 𝐼−𝑙𝑗 , 𝑗 = 1, . . . , 𝑁𝑙, 𝑙 = 1, . . . , 𝐿, herewith on 𝑥𝑟 input
signal that MANN has output 𝑦𝑟, which is optimally close to
the desired output𝑑𝑟.MANN’s outputs are taken as indexes of
classes appropriate to the sentences. Usually, training quality
is defined by the mean square error function [41]:

𝐸 (𝑤, 𝜃; 𝑥, 𝑠, 𝑦) = 1𝑅
𝑅∑
𝑟=1

𝜂𝑟𝐸𝑟 (𝑤, 𝜃; 𝑥𝑟, 𝑠𝑟, 𝑦𝑟) ,

𝐸𝑟 (𝑤, 𝜃; 𝑥𝑟, 𝑠𝑟, 𝑦𝑟) = 12
𝑁𝐿∑
𝑗=1

(𝑦𝐿𝑗,𝑟 − 𝑑𝑗,𝑟)2 ,
(14)

where 𝜂𝑟 is coefficient, which determines the belonging
“quality” of input 𝑥𝑟 to its “ideal” pattern 𝑟 = 1, . . . , 𝑅, 𝑗 =1, . . . , 𝑁𝐿.

The task of MANN training stipulates to minimize the
criterion (14) according to parameters (𝑤, 𝜃) with (10)-(12)
requirements. The MANN in the developed system was
trained using the conjugate gradient method.

We set two thresholds for the acceptance recognition:

1. 𝑦𝑘 ≥ Δ 2,
2. 𝑦𝑘 − 𝑦𝑝 ≥ Δ 3.𝑦 is the output of Multilayer Artificial Neural Network,𝑦𝑘 and 𝑦𝑝 are maximum two elements of the vector 𝑦. It can

be described as follows:

𝑦𝑘 = max
1≤𝑖≤𝑁

𝑦𝑖, 𝑘 = argmax
1≤𝑖≤𝑁

𝑦𝑖,
𝑦𝑝 = max
1≤𝑖≤𝑘−1;𝑘+1≤𝑖≤𝑁

𝑦𝑖. (15)

Subjectivity detection results of ANFIS with various Δ 2
and Δ 3 are given in Table 3.

The accuracy of FCS (92.02%) is less than the accuracy of
ANFIS (92.16%) due to extra variables in the hidden layers of
the MANN.



6 Advances in Fuzzy Systems

P (O, q∗ 2)

P (O, q∗ 1)

∗ = ；ＬＡ Ｇ；Ｒ
1≤≤N
[P (O, q∗ )]

`

Observation
sequence, O

||

||

||

Figure 4: Subjectivity detection using HMM.

Table 3: Cross validation results of ANFIS with TF ⋅ ICF feature.

No restriction Δ 2 = 0.5; Δ 3 = 0.5 Δ 2 = 0.8; Δ 3 = 0.5
Correct (%) 92.16 85.85 78.81
Reject (%) 0.01 8.58 18.72
Error (%) 7.83 5.57 2.47

Table 4: The results of ergodic and left-right HMMs for detecting sentence level subjectivity.

1 state 2 states 3 states 5 states
Left-right HMM (%) 89,37 88,26 87,28 86,85
Ergodic HMM (%) 89,38 89,63 89,33 89,21

8. Subjectivity Detection Using
Hidden Markov Model

HMMs are a substantial statistical method for modeling
generative sequences that can be categorized by a fundamen-
tal process generating a perceptible sequence. HMMs have
been successfully applied in speech recognition. They have
also been used successfully in some NLP problems such as
part-of-speech tagging, expression yielding, and excerpting
necessary data from documents [42].

With the aim of classifying objective and subjective
expressions, a discrete ergodic HMM was employed. We
parted expressions into a lot of states and yielded terms com-
prising these states. Gathering such states provides us with
better outcomes and does not use knowledge of language.

Let us describe main parameters of HMM as follows [4]:
1. 𝜋 = {𝜋𝑖}𝑁𝑖=1 is the initial state distributions: 𝜋𝑖 =𝑃(𝑞1 = 𝑖), where N is the number of states.
2. 𝐴 = ⌊𝑎𝑖,𝑗⌋ is the state transition probability matrix,𝑎𝑖,𝑗 = 𝑃(𝑞𝑡+1 = 𝑗 | 𝑞𝑡 = 𝑖), 1 ≤ 𝑖, 𝑗 ≤ 𝑁.

3. 𝐵 = {𝑏𝑗(𝑜𝑡)}𝑁𝑗=1 are the state-dependent observation
probabilities. Here, for every state j, 𝑏𝑗(𝑜𝑡) = 𝑃(𝑜𝑡 |𝑞𝑡 = 𝑗) is the probability distribution of words
occurring in states.

4. 𝑂𝑟 = [𝑜𝑟1, 𝑜𝑟2, . . . , 𝑜𝑟𝑇𝑟] are the observation sequences,
where R is the number of observed sequences, 𝑇𝑟 is
the length of r-th observed sequence, and 𝑇𝑟 ≤ 𝑇, T
is the given quantity, 𝑟 = 1, 2, . . . , 𝑅.

We applied Baum-Welch algorithm for the training of
HMMs for all classes. The scaled-forward algorithm is
applied for the estimating probability of classes for each
observed sentence in testing process. The maximum prob-
ability among probabilities of classes is found as a decision
(Figure 4).

The HMM outcomes with various states are illustrated
in Table 4. Experiments were carried out for the ergodic
and left-right Hidden Markov Models. According to exper-
iments ergodic HMMs with 2 states show best perfor-
mance.

9. Hybrid Systems

With the aim of classifying the subjectivity and objectivity
of sentences, we suggest employing a combined system
utilizing the HMM, FCS, and ANFIS methods. Within the
experiment process we analyze each sentence by all methods.
The outcomes of HMMs, FCS, and ANFIS are directed to the
decision-making block and compared therein.

Two types of hybrid systems are suggested.

9.1. Hybrid-I. The outcomes verified by the HMMs, FCS, and
ANFIS methods are confirmed by this system. In case of
decline of some of these models’ classification, no decision
is accepted by the system. As the system forestalls the error in
the testing process, it is considered more reliable. The results
of Hybrid-I are shown in Table 5.

9.2. Hybrid-II. We suggest a sequential method in this
system. In accordancewith the procedure, in case of failure by
one classifier to classify a sentence, the unclassified sentence
will be passed to the next classifier up to classification of
the given sentence or no availability of another classifier. By
means of this method, the number of rejected sentences is
reduced.

At first ANFIS is applied to rejected sentences by FCS and
then consequently ergodic HMMs with 2 states are applied
to the rejected sentences by ANFIS in Hybrid-II. By this way
we increase classification rate up to 92.24%. The results of
Hybrid-II are given in Table 6.
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Table 5: The results of Hybrid-I.

FCS(%) ANFIS (%) EHMM-2 (%) Hybrid –I
Correct (%) Rejection (%) Error (%)

Average 92.02 92.16 89.63 88.21 6.67 5.12

Table 6: Average 10-fold CV results of Hybrid-II.

FCS
(Δ 1 = 0.3) ANFİS (Δ 2 = 0.8; Δ 3 = 0.5)

Applied rejected samples of FCS EHMM-2
(%)

Hybrid-II
Correct (%)Correct

(%)
Rejection

(%)
Error
(%)

Correct
(%)

Rejection
(%)

Error
(%)

76.53 20.81 2.66 78.52 18.76 2.72 73.13 92.24

10. Conclusion

Three various classification system methods such as FCS,
ANFIS, and HMM were depicted and employed by us for
detecting the sentence-level subjectivity in a film analysis
database. Training and testing mechanisms of these meth-
ods have been particularly demonstrated by us to classify
sentences as objective and subjective. Through this analysis
we targeted developing methods which would be capable of
being applied in various languages since they do not depend
on linguistic knowledge. The feature extraction proceeding
is a significant element of these methods. We concentrated
on study of informative features enhancing the precision of
the systems which do not have language specific restrictions.
Thus “Pruned ICFWeighting Function” novel was conceived
with a parameter specially calculated for the subjectivity data
set. While bringing the already created system in comparison
with other different systems, we should foreground that, in
fact, the utilization of linguistic knowledge increases preci-
sion. Due to fact that linguistic knowledge is not used in our
method, our output may solely be compared with methods
having same restrictions which utilize components based on
bag of terms that are investigated on the same data collection.
Researches of Pang and Lee [9] andMartineau and Finin [16]
are included in those examples. Bymeans of Naıve Bayes clas-
sifiers Pang and Lee achieve 92% accuracy on sentence-level
subjectivity classification and through utilization of SVMs
they report 90% on the same set of data. 91.26% accuracy
was achieved by Martineau and Finin [16] utilizing SVM
Difference of TFIDFs. The presently achieved outputs are
similar as follows: FCS (92.02%), ANFIS (92.16%), andHMM
(89.63%). Notwithstanding these indications, the methods
we suggested have certain superiorities. Since function (6)
is reduced only regarding 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑁) (in the
identified problem N=2), FCS has low complexity compared
to other sophisticated supervisedmachine learningmethods.
Through extra fluctuations added in the central layer of the
neural network, ANFIS may slightly increase accuracy. In
case of applying IF-THEN rules in ANFIS and FCS, it is
assumed that the accuracy of the system will increase to the
level where it gets abreast with human discernment. FCS
and ANFIS categorize sentences by dint of occurrence of the
words in the output; however theHMMcategorizes sentences
according to the arrangement of the sentences. The given

interpretation can be utilized to establish two various types
of hybrid systems. Through combining multiple classifiers,
a better performance than the result of any classifier can be
achieved. The Hybrid-I system forestalls particular errors in
the classification process, and theHybrid-II system improved
the accuracy to 92.24%.
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